
Serial No. 276879

New 3-16-78

INSTRUCTION MANUAL

MODEL 3001 OPT SIGNAL GENERATOR

WAVETEK® INDIANA INC.

66 N. 1ST AVENUE, P.O. BOX 190
BEECH GROVE, INDIANA 46107
317—783-3221

SCOPE OF THIS MANUAL

This manual provides descriptive material and instructions for the installation, operation, maintenance, and repair of the WAVETEK Model 3001 Signal Generator.

This document contains information proprietary to Wavetek. The information in this document is not to be used or duplicated in any manner without the prior approval in writing of Wavetek.

WARRANTY

All Wavetek instruments are warranteed against defects in material and workmanship for a period of one year after date of manufacture. Wavetek agrees to repair or replace any assembly or component (except batteries) found to be defective, under normal use during this period. Transfermatic Switch assemblies, manufactured by Wavetek, are unconditionally warranteed for the life of the instrument. Wavetek's obligation under this warranty is limited solely to repairing any such instrument which in Wavetek's sole opinion proves to be defective within the scope of the warranty when returned to the factory or to an authorized service center. Transportation to the factory or service center is to be prepaid by purchaser. Shipment should not be made without prior authorization by Wavetek.

This warranty does not apply to any products repaired or altered by persons not authorized by Wavetek, or not in accordance with instructions furnished by Wavetek. If the instrument is defective as a result of misuse, improper repair, or abnormal conditions or operations, repairs will be billed at cost.

Wavetek assumes no responsibility for its product being used in a hazardous or dangerous manner either alone or in conjunction with other equipment. High voltage used in some instruments may be dangerous if misused. Special disclaimers apply to these instruments. Wavetek assumes no liability for secondary charges or consequential damages and, in any event, Wavetek's liability for breach of warranty under any contract or otherwise, shall not exceed the purchase price of the specific instrument shipped and against which a claim is made.

Any recommendations made by Wavetek for use of its products are based upon tests believed to be reliable, but Wavetek makes no warranty of the results to be obtained. This warranty is in lieu of all other warranties, expressed or implied, and no representative or person is authorized to represent or assume for Wavetek any liability in connection with the sale of our products other than set forth herein.

CONTENTS

SECTION 1 G	GENERAL INFORMATION	Page
1 1	.1 INTRODUCTION	1-2
SECTION 2 O	PERATION	
2 2 2 2 2 2 2	.1 INTRODUCTION2 MECHANICAL INSTALLATION3 ELECTRICAL INSTALLATION4 DESCRIPTION OF FRONT PANEL .5 DESCRIPTION OF REAR PANEL .6 INSTALLATION CHECKS .7 OPERATING PROCEDURE.	2-1 2-2 2-2 2-5 2-6
SECTION 3 TH	HEORY OF OPERATION	
3. 3. 3. 3. 3. 3. 3. 3. 1 3. 1 3. 1 3.	M2M - SWEEP DRIVE. M9W - SWEEP OSCILLATOR M10W - OUTPUT AMPLIFIER. M22 - DIGITAL to ANALOG CONVERTER. M29-1 - FM REFERENCE M30-1 - CRYSTAL SOURCE M31 - kHz STEPS. M32 - MHz STEPS. M33-1 - NARROW OSCILLATOR LOCK M34 - WIDE OSCILLATOR LOCK	3-1 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17 3-19 3-21
SECTION 4 PE	RFORMANCE TESTS	
4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	FREQUENCY RANGE AND RESOLUTION TEST. FREQUENCY ACCURACY TEST. FREQUENCY STABILITY TEST. OUTPUT LEVEL ACCURACY TESTS. HARMONICS TEST. NON-HARMONIC TEST. RESIDUAL AM TEST. RESIDUAL FM TEST. INTERNAL MODULATION FREQUENCY TEST. PERCENT AM ACCURACY TEST. AM BANDWIDTH TEST. AM DISTORTION TEST. FM DEVIATION ACCURACY TEST.	4-2 4-3 4-5 4-6 4-11 4-13 4-14 4-15 4-16 4-17 4-19 4-21 4-22

CONTENTS CONTINUED

				Page
	4.17	FM DISTORTION TEST	•	4-26
SECTION 5	MAIN	TENANCE		
	5.2 5.3	INTRODUCTION	•	5 - 1 5 - 4
SECTION 6	REPL	ACEABLE PARTS		
	6.1 6.2	INTRODUCTION	•	6-1 6-1
SECTION 7	SCHE	MATICS		
	7.2 7.3	INTRODUCTION	:	7-1 7-2
SECTION 8	MANU	AL CHANGES AND OPTIONS		
	8.2	INTRODUCTION	•	8-1

SECTION SECTION

1.1 INTRODUCTION

The Model 3001 is a rugged, completely solid-state Signal Generator covering the frequency range of 1 to 520 MHz. The output can be amplitude or frequency modulated and the level can be set between +13 and -137 dBm.

1.1.1 Frequency Characteristics

The frequency of the unit is set via 6 front - panel lever/indicator switches which yield a resolution of 1 kHz. In addition, remote frequency programmability is standard. Series 3900 programmers are available to facilitate semi-automatic programming of both frequency and output level.

The accuracy of the instrument is based on a crystal-controlled oscillator that serves as a stable frequency reference that enables the Model 3001 to provide high stability signals to an accuracy of 0.001% over its specified 1 MHz to 520 MHz range. This accuracy includes possible errors due to short term drift, long term drift, incidental FM and variations due to line voltage changes and temperature changes. With the frequency VERNIER out of the CAL position, the frequency is accurate to 0.001% ±10 kHz.

The accuracy of the instrument can be improved by using either the optional external reference input or the optional high stability internal reference. An auxiliary RF output option is also available to drive a counter.

1.1.2 Modulation

The Model 3001 also features both

internal and external amplitude and frequency modulation capabilities. Internal modulation frequencies of 400 Hz and 1 kHz are available. In the FM mode of operation, peak deviations up to 100 kHz are atainable. In the AM mode, amplitude modulation to 90% is attainable.

With the MODULATION MODE switch in the AM position and the MODULATION FREQUENCY switch in the DC position the output amplitude can be varied by the MODULATION FM/AM control. This provides a reference attenuator for variation of a signal level around a specific point of interest. This operation can also enable the user to obtain greater than 20 milliwatts of power over portions of the band. The frequency can also be continuously varied with this control over a 100 kHz range.

1.1.3 Output Level Features

The output power is indicated on a front-panel meter calibrated in both dBm and VRMS. A fifteen-position, 10 dB/step Attenuator used in conjunction with an 11 dB VERNIER control provides the user with a range of +13 dBm to -137 dBm. Two programmable attenuator options are available: 109.9 dB in 0.1 dB steps and 90 dB in 10 db steps.

The calibrated output of the Model 3001 is leveled to within ± 0.75 dB across the complete frequency range of the instrument.

Reverse power protection is also available as an option.

1.2 SPECIFICATIONS

1.2.1 Frequency

RANGE

1 MHz to 520 MHz selectable in 1 kHz steps.

READOUT

6 digit lever/indicator switches

RESOLUTION

1 kHz

ACCURACY

All modes (CW, AM and FM) ±0.001% (+0.001% +10 kHz when frequency VERNIER is

not in CAL position. Frequency VERNIER

range is +5 kHz.)

STABILITY

All modes (CW, AM and FM) <0.2 ppm/hour (500 Hz per 10 min when frequency VERNIER is not in CAL position.)

PROGRAMMABILITY

Frequency is programmable via rear-panel input connector using BCD-coded TTL voltages or BCD-coded contact closures (Negative true logic).

1.2.2 RF Output

POWER LEVEL RANGE

+13 dBm to -137 dBm (1 V to .03 μ V)

LEVEL CONTROL

Continuously adjustable in 10 dB steps and with an 11 dB VERNIER. Output level is indicated on a front-panel meter calibrated in volts RMS and dBm.

TOTAL LEVEL ACCURACY

+13 to -7 dBm +1.25 dB -7 to -77 dBm +1.95 dB -77 to -137 dBm +2.75 dB

Accuracy Breakdown

Flatness (+13 to -7 dBm) ± 0.75 dB Output Meter ± 0.5 dB Step Attenuator ± 0.5 dB to 70 dB (± 0.2 dB calibration error) ± 1.0 dB to 130 dB (± 0.5 dB calibration error)

`-

IMPEDANCE

50 ohms

SWR

<1.2 at RF output levels below 0.1 V

OUTPUT CONNECTOR

Type N

LEAKAGE

<1 μV is induced in a two-turn, one-inch diameter loop which is held one inch away from any surface. Loop feeds a 50 ohm receiver.

1.2.3 Spectral Purity

-	
HARMONIC OUTPUT	>30 dB below fundamental from 10 to 520 MHz >20 dB below fundamental from 1 to 10 MHz
SUB-HARMONICS	None detectable
NON-HARMONICS	Fundamental Non-Harmonic Non-Harmonic (MHz) (MHz) Level (dB be-low fundamental)
	1 to 3
RESIDUAL AM	>55 dB below carrier in a 50 Hz to 15 kHz post-detection bandwidth.
RESIDUAL FM	<200 Hz in a 50 Hz to 15 kHz post-detection bandwidth. (Typically 100 Hz.)
1.2.4 Amplitude Modulation	NOTE: These specifications apply for a carrier level <+3 dBm. AM is possible above +3 dBm if the peak output does not exceed +13 dBm.
FREQUENCY Internal External	400 Hz and 1 kHz ±5% (typically ±3%) DC to 20 kHz, (3 dB bandwidth), input level required = 10 volts pp into 600 ohm to provide calibrated % modulation control.
RANGE	0 to 90%
DISTORTION	3% distortion to 70% AM (5% to 90% AM) at a frequency of $1~\mathrm{kHz}$
MODULATION CONTROL	Calibrated from 0 to 90%
ACCURACY	\pm (5% of reading +5%) at a frequency of 1 kHz
1.2.5 Frequency Modulation	
FREQUENCY Internal External	400 Hz and 1 kHz, ±5% 50 Hz to 25 kHz, (1 dB bandwidth), input level required = 10 volts pp into 600 ohms to provide calibrated deviation control. (DC to 25 kHz when frequency VERNIER is not in CAL position.)
DEVIATION PEAK	Two bands, 0 to 10 kHz, and 0 to 100 kHz

GENERAL INFORMATION

DEVIATION CONTROL

Calibrated from 0 to 10 kHz, xl and x10

ACCURACY

+500 Hz on x1 range +5 kHz on x10 range

DISTORTION

4% (3 to 100 kHz deviation) at a frequency of 1 kHz

1.2.6 General

OPERATING TEMPERATURE

25°C \pm 5°C, all specifications apply 25 \pm 15°C, with slight degradation of specifications

POWER

 $115/230 \text{ V} \pm 10\%$, 50 to 400 Hz, 40 VA

DIMENSIONS

30.3 cm wide x 13.4 cm high x 34.9 cm long $(12" \times 5\frac{1}{4}" \times 13 3/4")$.

WEIGHT

11.4 kg (25 lb) net 13.6 kg (30 lb) shipping

1.3 OPTIONS

Options 1A, 1B and 4 are factory installed; options 3, 5 and 6 are either factory or field installed. Maximum number of options per instrument is four (1A or 1B or 3) \pm 4 + 5 + 6. Request individual specifications for each option for a complete description of each and how it affects the instrument specifications.

1.3.1 RF Level Programming

For both options 1A and 1B the instruments are calibrated for +13 dBm at 50 MHz 1ike a standard unit but due to greater losses in programmable attenuators, a calibrated output is only guaranteed to +12 dBm.

Option "1A" Program Level Range: 0 to 109.9 dB in .1 dB steps. 0 db reference is +13 dBm. Front-panel level range: Continuously adjustable from +13 dBm to -97 dBm in 10 dB steps and an 11 dB VERNIER. Reverse power protection is also provided by this option.

Option "1B" Program Level Range: 0 to 90 dB in 10 dB steps. 0 dB reference set by front-panel attenuators. (Remote control of CW/AM mode is also provided). Front-panel level range: See section 1.2.2.

Reverse power protection is also provided

by this option.

1.3.2 Reverse Power Protection

Option "3" prevents damage to the instrument if DC (100 V max) or RF (50 W max) voltages are accidentally applied to the RF output connector. (This option is not required when using option 1A or 1B).

1.3.3 Auxiliary RF Output

Option "4" provides a leveled (-10 dBm) signal available from a rear-panel BNC connector (normally used to drive a frequency counter).

1.3.4 External Reference

Option "5" provides a rear panel BNC input for accepting an external frequency reference. This input is used to improve the accuracy of the instrument from 10 ppm to that of the external source. The external source frequency can be 1, 2, 2.5, 5 or 10 MHz with an accuracy of 1 ppm or better with a minimum level of 50 mV into a 1 $k\Omega$ load.

1.3.5 High Stability Reference (Option 5 is necessary for driving model 3001 with Option 6.)

Option "6" provides a high stability rear panel output which can be used to drive the rear-panel input of option "5". This high stability TTL output can also be used to drive other devices which require a high stability reference input. Maximum fan-out is four.

Output Frequency 5 MHz
Accuracy after 1 hour warm-up
Aging .005 ppm/day

.05 ppm/month
.3 ppm/year

Temperature 25 ±15°C .05 ppm
Typical overall accuracy (within 3 months of calibration) .2 ppm, 25 +15°C.

1.4 ACCESSORIES

Furnished with instrument

Additional Accessories

Instruction Manual Rear-panel remote plug and pins

Rack Mount Kit, K108
Programmers for single push button control of selected frequencies or output levels, Series 3900.

SECTION 2 OPERATION

2.1 INTRODUCTION

This section provides complete installation and operating instructions for the Wavetek Model 3001 signal generator. The instructions consist of mechanical installation, electrical installation, front and rear panel features, installation checks and operating procedures.

2.2 MECHANICAL INSTALLATION

2.2.1 INITIAL INSPECTION

After unpacking the instrument, visually inspect external parts for damage to knobs, connectors, surface areas, etc. The shipping container and packing material should be saved in case it is necessary to reship the unit.

2.2.2 DAMAGE CLAIMS

If instrument received has been damaged in transit, notify carrier and either the nearest Wavetek area representative or the factory in Indiana. Retain shipping carton and packing material for the carrier's inspection.

The local representative or the factory will immediately arrange for either replacement or repair of your instrument without waiting for damage claim settlements.

2.2.3 RACK MOUNTING (K108)

CONTENTS (See Figure 2-1).

Item	QTY	Part No.
A (Insert) B (Side) C (Screw) D (Screw)	2 ea 2 ea 8 ea 4 ea	B001-145 C001-146 HS101-808 HS101-810

PROCEDURE

Remove the screws from one side panel. Mount items A and B against side panel of the instrument and secure with screws provided. (Screws D are longer than screws C.) Repeat operation for the other side of unit.

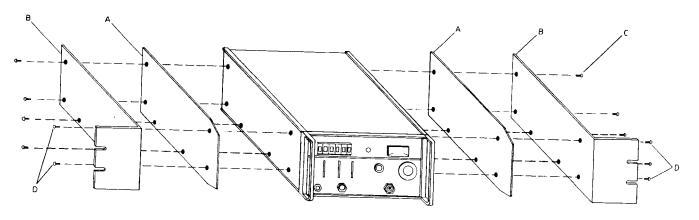


Figure 2-1. K108 Rack Mount

OPERATION

2.3 ELECTRICAL INSTALLATION

The instrument operates from either 115-volt or 230-volt AC supply mains as selected by a Slide Switch located on rear panel. Before operating the instrument, check that fuse mounted in the rear-panel fuseholder corresponds to correct value for selected voltage,

i.e., 1.0 amp for 115 volt AC and 0.5 amp for 230 volt AC.

The power supply has been designed to operate over an AC-input range of 50 to $400~\mathrm{Hz}$.

Instruments are shipped from the factory for operation at 115-volt AC - unless specified for 230-volt AC operation.

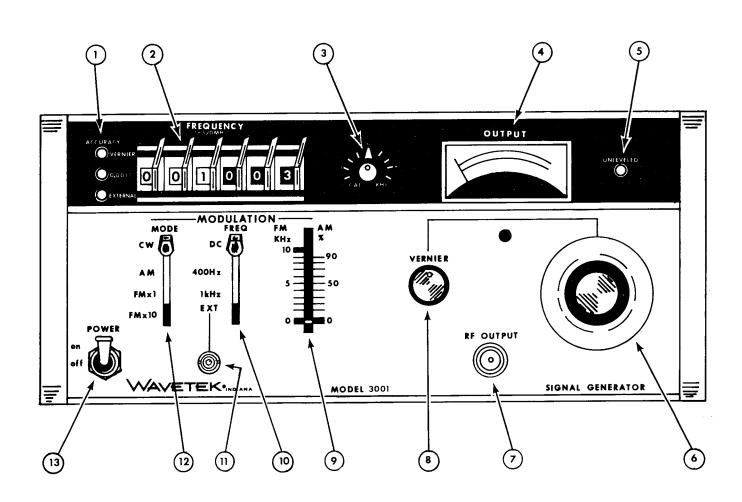


Figure 2-2. Front Panel

2.4 DESCRIPTION OF FRONT PANEL

1 Accuracy Lamps

Indicate frequency accuracy as follows:
 Vernier - lamp indicates that freq

1 Accuracy Lamps (continued)

- 2 Lever Indicator Switches
- Freq Vernier

- 4 Output Level Meter
- (5) Unlevel Lamp
- (6) Attenuator
- 7) RF out
- 8 Output Level Vernier

VERNIER is not in CAL position; accuracy is $\pm (0.001\% + 10 \text{ kHz})$ in all modes.

0.001% - lamp indicates that freq VER-NIER is in CAL position; accuracy in all modes (CW, AM, FM) is +0.001%

External - lamp indicates that external freq reference is being used; accuracy is that of the external reference source.

Typically, the lamp will flash for a few seconds after power is turned on. Normally, a steady light indicates that unit is phase - locked and frequency accuracy indication is valid; however, a continuously flashing light indicates that one or more of the phase-lock loops is open. (The open loop can be identified by removing unit top cover, and looking for the corresponding "module-fault" light.)

Select and indicate desired output frequency from 1 to 520 MHz with a 1 kHz resolution.

In its CAL position, accuracy in all modes (CW, AM, FM) is $\pm 0.001\%$ as indicated by steady lighting of 0.001% Accuracy lamp.

When VERNIER is out of CAL position, accuracy in all modes is $\pm (.001\% + 10 \, \text{kHz})$ as indicated by steady lighting of "Vernier" accuracy lamp. The frequency VERNIER can shift output frequency over a 10 kHz range (-5 kHz to +5 kHz).

Indicates output level over a 10 dB range in VRMS and dBm. (See section 2.7.3).

Indicates that the output-level-meter reading is not valid when the lamp is on.

Controls the output level over a 140 dB range from +10 to -130 dBm. The Attenuator dial is calibrated in dB and VRMS. (See section 2.7.3).

Type N connector provides the RF-output signal from the instrument.

Controls the output level over an 11 dB range.

(9) Modulation FM/AM Slider

- (10) Modulation Frequency Switch
- (11) Ext Modulation Input

(12) Mode Switch

(13) Power Switch

Is calibrated from 0 to 10 kHz FM peak deviation, and from 0 to 90% AM. This control permits precise AM or FM settings with mode switch in AM, FM x 1, or FM x 10 respectively and with frequency switch in 400 Hz, 1 kHz, or Ext. This control also serves as a manual amplitude control (AM mode) or manual frequency control (FM modes) with frequency switch in DC. The slider can also enable the user to obtain more than 20 milliwatts of power over portions of the band when mode switch is in AM mode; in FM modes, the frequency can be continuously varied with this control over a 10 kHz or a 100 kHz In CW mode, the FM/AM has no function.

Selects DC (used for manual amplitude or frequency control), 400 Hz or 1 kHz internal modulation, or external modulation.

BNC connector accepts external modulating signals as follows:

AM = DC to 20 kHz FM (Freq VERNIER in CAL) = 50 Hz to 25 kHz FM (Freq VERNIER notin CAL) = DC to 25 kHz

A 10 Vpp signal into 600 ohms is required for FM/AM slider calibration to be correct. A lesser input voltage will result in proportional calibration of the FM/AM slider; thus, a 1 volt pp signal into 600 ohms will result in a full-scale calibration of 1 kHz peak deviation in FM x 1, a 10 kHz peak deviation in FM x 10, or 10% amplitude modulation in AM.

Selects CW, AM, FMxl or FMx10 operation.

Provides AC power to the power supply.

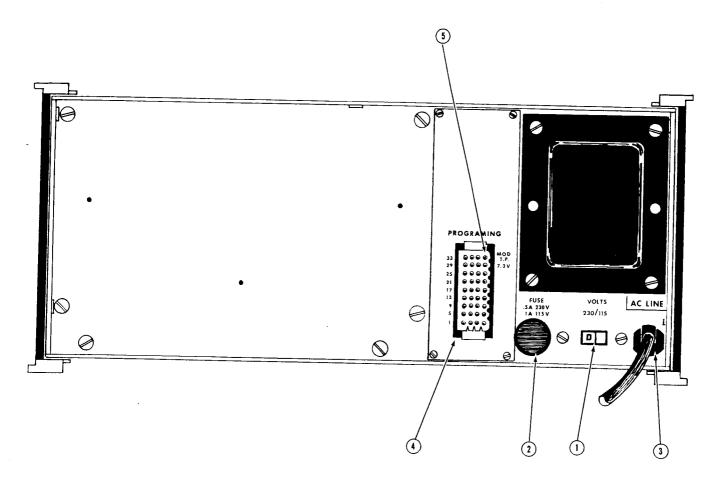


Figure 2-3. Rear Panel

2.5 DESCRIPTION OF REAR PANEL

- 1) Switch 115/230 V
- (2) AC Line Fuse
- (3) Input 50-400 Hz
- 4 Programming
- (5) Modulation Test Point

Selects either 115-volt AC or 230 volt AC supply mains. Before operating instrument, check that fuse mounted in Rear-Panel Fuseholder corresponds to the correct value for selected voltage.

1.0 amp for 115-volt AC, or 0.5 amp for 230-volt AC.

3-prong AC plug provides connection to AC mains.

Provides remote connection for programming of frequency.

Provides convenient connection for monitoring amplitude or frequency of internal or external modulating signal. OPERATION Model 3001

2.6 INSTALLATION CHECKS

The following procedure is used to determine that the instrument is operating properly. Performance testing and calibration procedures for the instrument are contained in other sections of this manual. If it is determined that the unit is not operating properly refer to these sections.

2.6.1 TURN ON

Verify that the power-transformer primary is matched to the line voltage available, and that the proper fuse is installed. (See Section 2.3 Electrical Installation). Turn the front-panel power switch to its "ON" position. One of the front panel accuracy lights will be illuminated indicating an operating condition. No warmup is needed for the following checks.

2.6.2 CONTROL ADJUSTMENT

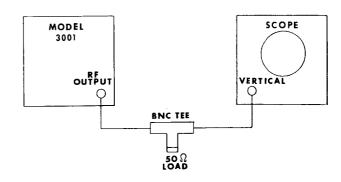
Set the Model 3001 front-panel controls as follows:

Output Frequency 10 MHz(Lever-indicator switches to 010.000).

Freq Vernier CAL

(12) Mode Switch CW

10) Frequency Switch 1 kHz


(9) FM/AM Slider 0

(8) Level Vernier Full cw

6 Attenuator +10 dBm

2.6.3 RF OUTPUT CHECK

Connect the equipment as shown in Figure 2-4. The 10 MHz signal must be at least 2.8 Vpp (a high frequency oscilloscope must be used for these checks).

NOTE: MUST BE HIGH-FREQUENCY OSCILLOSCOPE (GREATER THAN 10 MHz)

Figure 2-4. Test Setup

2.6.4 AM MODULATION CHECK (1000 Hz)

Switch the MODE switch to AM. Move FM/AM slider up to the 50% modulation point. Verify that AM envelope displayed on oscilloscope shows a peak-to-valley voltage difference of about 1.4 V and a period of 1 ms. (See Figure 2-5).

Figure 2-5. Amplitude Modulation

2.6.5 AM MODULATION CHECK (400 Hz)

Move frequency switch to its 400 Hz position. Verify that AM envelope period is 2.5 ms.

2.6.6 FMx1 CHECK

Switch the MODE switch to FMx1. Move FM/AM slider up and down. Verify that oscilloscope shows an FM display (See Figure 2-6).

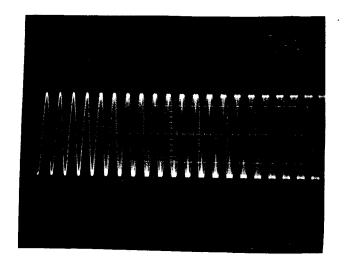


Figure 2-6. Frequency Modulation

2.6.7 FMx10 CHECK

Switch MODE switch to FMx10 and repeat above check.

2.6.8 FM/AM SLIDER CHECK (FREQ.)

Leaving MODE switch in the FMx10 position, place frequency switch in the DC position. Verify that moving FM/AM slider from 0 to 10 kHz shows an increase in frequency on the oscilloscope.

2.6.9 FM/AM SLIDER CHECK (OUTPUT)

Switch MODE switch to the AM position. Verify that moving FM/AM slider from 0 to 50 shows an increase in output amplitude. (NOTE: The unlevel light may come on during this test.)

2.6.10 ATTENUATION CHECK

Switch mode switch to CW. Verify that Output VERNIER and Attenuator controls change amplitude of signal displayed

on the oscilloscope.

2.6.11 FREQ VERNIER CHECK

Switch Freq VERNIER out of CAL position. The .001% lamp should go out, and the Vernier lamp should light. Moving the VERNIER from -5 kHz to +5 kHz should show a slight change in frequency on oscilloscope. The instrument is now ready for use.

2.7 OPERATING PROCEDURE

No preparation for operation is required beyond completion of the initial installation checks contained in Section 2.6. To insure that the Model 3001 will perform as stated in the specifications, the instrument should have a two-hour warmup before using.

2.7.1 TURN ON

Turn front-panel switch "ON". One of front-panel accuracy lights will be illuminated indicating an operating condition.

NOTE

A flashing light indicates an unlocked condition. This should cease in a matter of seconds.

If the unit is not going to be used to the extreme limits of its specifications, it can be used immediately.

CAUTION

When working with active circuits, transceivers, etc., care must be used to keep DC voltage or RF power from being applied to the RF-output connector, otherwise damage may occur to the output Attenuator circuitry of the Model 3001.

2.7.2 FREQUENCY SELECTION

Select the frequency desired with the six Lever - Indicator switches on the

front panel. A frequency between 1 and 520 MHz can be selected with a 1 kHz resolution.

2.7.3 OUTPUT LEVEL SELECTION

Set output Attenuator and VERNIER to the desired level. The output is continuously adjustable over a +13 to -137 dBm range. The RF output equals the level shown on the Attenuator algebraically added to the meter indication.

2.7.4 AMPLITUDE MODULATION - INTERNAL

Set MODE switch to AM and the frequency switch to either 400 or 1000 Hz modulation rate. Adjust FM/AM slider to indicate desired modulation depth.

2.7.5 AMPLITUDE MODULATION - EXTERNAL

CAUTION

Input voltages greater than ± 10 VDC or 10 VRMS should not be applied to the External modulation-input connector or damage may occur to the Model 3001.

Set MODE switch to AM and the frequency switch to external. Apply a 10 Vpp signal into 600 ohms to the External modulation-input connector. This calibrates the FM/AM slide control. The desired modulation depth can then be set. The upper frequency limit of this input is 20 kHz.

NOTE

When AM modulating, care must be taken not to exceed the +13 dBm maximum level or excessive distortion and an unlevel condition can exist. In some cases, a high % of AM modulation may cause the unlevel light to come on when output VERNIER control is at minimum. This is caused by "bottoming" of the PIN diode leveler which, in turn, can cause an increase in distortion. If this is the case, add 10 dB of fixed attenuation,

and turn Output VERNIER control toward maximum. The unlevel light should then go out.

2.7.6 FREQUENCY MODULATION - INTERNAL

Set MODE switch to FMx1 or FMx10 and the frequency switch to 400 or 1000 Hz. Adjust FM/AM slider to desired peak deviation.

2.7.7 FREQUENCY MODULATION - EXTERNAL

CAUTION

Input voltages greater than ± 10 VDC or 10 VRMS should not be applied to the External modulation-input connector or damage may occur to the Model 3001.

Set MODE switch to FMx1 or FMx10 and the frequency switch to external. Apply a 10 Vpp signal to the External modulation-input connector (600 ohms). This calibrates the FM/AM slide control. The desired peak deviation can now be set. For FM modulation, the upper frequency limit is 25 kHz; the lower limit is 50 Hz with Freq VERNIER in CAL, or DC with Freq VERNIER not in CAL position.

2.7.8 FM/AM SLIDER - FM POSITION

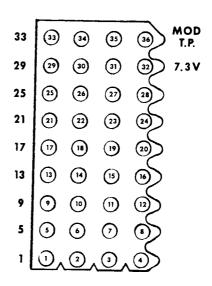
Switch MODE switch to FMx1 or FMx10 position and the frequency switch to DC. Using FM/AM slide control, frequency can be increased up to $10~\rm kHz$ in the x1 position or $100~\rm kHz$ in the x10 position.

2.7.9 FM/AM SLIDER - AM POSITON

Switch MODE switch to AM postion and the frequency switch to DC. Using FM/AM slide control, the output amplitude can be varied. It also enables more than 20 mW of power to be obtained over portions of the band.

2.7.10 FREQ VERNIER

In the CAL position, output frequencies having an accuracy or +0.001% may be


selected by the lever switches with a resolution of l kHz. When Freq. VERNIER is out of CAL position, the selected output frequency can be shifted ±5 kHz with Freq. VERNIER control. The output frequency at the "0" kHz position of VERNIER corresponds closely to the output frequency in CAL.

2.7.11 PROGRAMMING

Frequency is programmable via a rearpanel input connector, using standard 8-4-2-1 BCD contact closures. The rearpanel frequency connections are in parallel with front-panel Lever-Indicator switches; thus, if rear-panel programming is used, front-panel switches must indicate all zeros. A mating rear-panel connector is supplied with each unit see Figure 2-7 for pin location and identification. Rear - panel BCD programming can be implemented by referring to Table 2-1.

For example, to program a frequency of 130.150 MHz, the following rear-panel connector pins would be grounded:

FREQ	CONN. PINS
DIGITS	GROUNDED
1	4
3	7 & 8
0	none
1	16
5	18 & 20
0	none

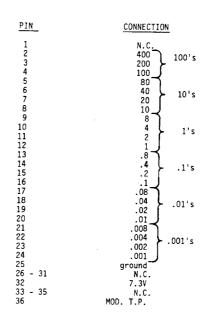


Figure 2-7. Pin Identification

TABLE 2-1. PROGRAMMING

	Switch	TTL
Logic "O"	Open	<u>></u> 2.2V
Logic "1"	Ground	<u><</u> 0.4V

SECTION 3 THEORY OF OPERATION

3.1 INTRODUCTION

Section 3.2 presents a block diagram analysis to enable the reader to get a brief overall view of the operation of the entire instrument. Sections 3.3 - 3.15 contain more detailed descriptions of each subassembly.

For actual wiring of the chassis and subassemblies, refer to the schematics in Section 7 of the manual.

3.2 OVERALL BLOCK DIAGRAM

The Model 3001 is essentially a voltage controlled oscillator to which phase-locked loops and a crystal reference have been added for the high frequency resolution.

The discussion will first deal with the basic signal generator then it will describe how the phase-locked loops provide the additional accuracy.

The numbers within the block diagram symbols refer to the particular assembly in which the circuit is located.

3.2.1 BASIC SIGNAL GENERATOR

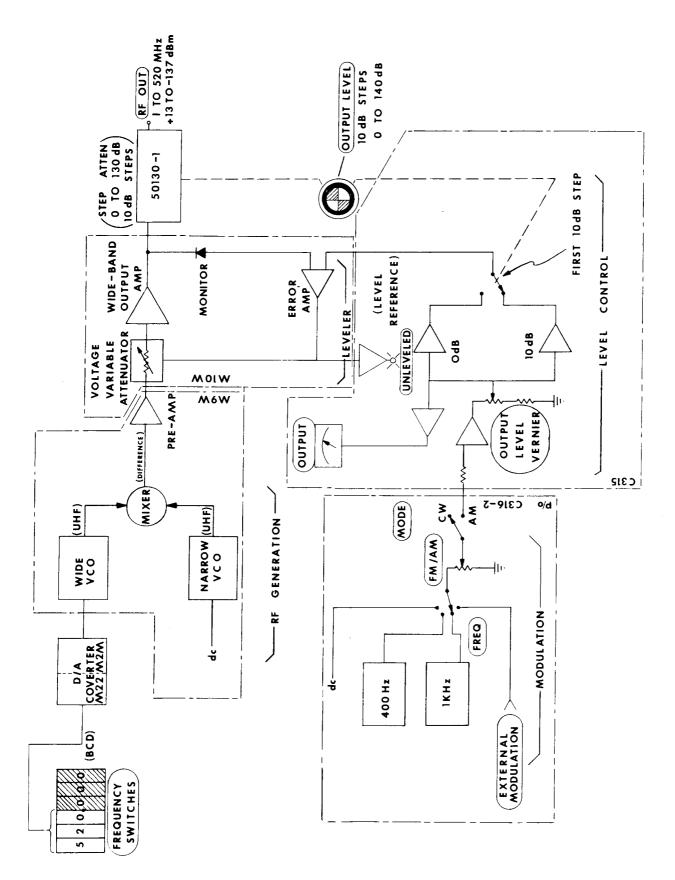
This discussion briefly describes how the RF is generated and how its frequency is controlled, also how the signal is amplified, leveled and amplitude modulated.

Refer to Figure 3-1 for a block diagram of the basic signal generator without phase locking.

RF GENERATION

The RF output frequency is generated by two UHF oscillators and a mixer. The outputs of the two oscillators are heterodyned in the mixer. The difference frequency is amplified and fed to the output amplifier.

The frequencies of these oscillators are controlled by DC voltages applied to their varactor diodes. The Narrow Oscillator yields a single frequency. The Wide Oscillator can be programmed over a range which extends from the frequency of the Narrow Oscillator to 520 MHz higher than the Narrow Oscillator frequency.


RF FREQUENCY CONTROL

The RF output frequency is determined by programming the frequency of the Wide Oscillator. The Wide Oscillator is ultimately controlled by the front-panel FREQUENCY switches. The BCD output of these switches is converted to an analog voltage which programs the oscillator in 1 MHz steps. This analog signal can provide approximately 3 MHz accuracy.

RF AMPLIFICATION AND LEVELING

The RF power is amplified by a multistage, wide-band amplifier. The flat output is maintained by a closed-loop leveling system around this Output Amplifier.

The Leveler includes a Monitor Diode, an Error Amplifier and a Voltage Variable

3-1. Basic Signal Generator

Attenuator. The Monitor detects the peak of the output of the Output Amp. This detected level is compared to a DC reference by the Error Amp. The output of the Error Amp is fed to a PIN diode (voltage variable) attenuator, which changes the input level to the Output Amp until the monitored signal produces a DC level equal to the reference level.

LEVEL CONTROL AND AM

The circuitry for controlling the RF output level is directly related to the above leveling system because changing the DC level reference changes the RF output level.

Of the 150 dB output range, 130 dB is passive attenuation. The remaining 20 dB is controlled by changing the level reference. The output level VERNIER has a 10 dB range. The remaining 10 dB is provided by switching the level ref-

erence range. This range switch is provided so that when AM is not required the output amp can provide a carrier at the highest possible power.

Since the RF level can be voltage controlled, AM can be accomplished by applying the modulating signal to the output level VERNIER. This causes the reference voltage to the Error Amp to change at the frequency of the modulating signal. The modulating signal is taken from one of two internal oscillators, a DC voltage or from an external source.

3.2.2 PHASE-LOCKED LOOPS

The basic signal generator discussed in Section 3.2.1 has a frequency range of 1 to 520 MHz, has an output voltage which is leveled and adjustable and has the ability to be amplitude modulated. With the above circuitry, however, the

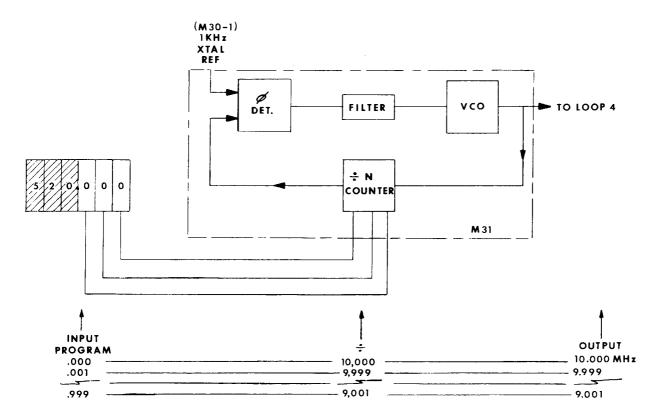


Figure 3-2. PLL #1

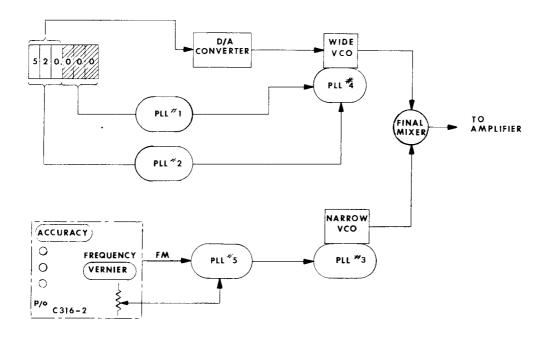


Figure 3-3. Phase Locked Loops

frequency accuracy is only 3 MHz with 1 MHz resolution. To achieve the desired 1 kHz resolution and .001% accuracy, the instrument includes five phase-locked loops.

Figure 3-3 illustrates the relationship between the five numbered loops and the "basic signal generator".

PLL #1, #2 and #4 are used to stabilize the Wide Oscillator and tune it in 1 kHz steps. The Wide VCO is part of PLL #4. PLL #1 and #2 convert the FREQUENCY switch setting to reference frequencies for PLL #4.

PLL #3 and #5 provide stabilization and allow FM operation. The Narrow VCO is part of PLL #3. PLL #5 converts a modulating signal (if present) to a reference frequency for PLL #3.

PLL #1

The purpose of PLL #1 is to generate a

CW signal which changes in 1 kHz steps from 10.000 to 9.001 MHz as the front panel frequency selector is switched from .000 MHz to .999 MHz. This signal will be used as a reference signal for PLL #4.

Figure 3-2 shows a simplified block diagram of PLL #1. It includes a voltage controlled oscillator capable of frequencies from 9 to 10 MHz, a phase detector and a :N counter. A sample of the output signal from the VCO is fed to a program-The divisor of the mable counter. counter is controlled by the three front panel kHz selector switches. The output from the counter is fed to a phase detector where it is compared to a 1 kHz crystal reference signal. If the two input signals to the phase detector are not the same frequency, an error signal is produced. This error voltage corrects the frequency of the VCO until the phase detector input from the counter is exactly 1 kHz. See section 3.12 for a more detailed explanation.

PLL #2

The purpose of PLL #2 is to generate a CW signal which changes in 1 MHz steps from 1448 to 1487 MHz when the front panel frequency selector is switched from 000. to 039. MHz. These CW steps are then repeated every 40 MHz throughout the entire 0 to 520 MHz range. Use of this signal to control the Wide Oscillator will be discussed in the description of PLL #4.

Figure 3-4 shows a simplified block diagram of PLL #2. PLL #2 operates in the same manner as PLL #1 with one exception. The circuit includes a mixer and band-pass amplifier. The purpose of this additional circuit is to offset the 1448 to 1487 MHz output from the VCO to 8 to 47 MHz. This offset is

necessary in order to make the frequency compatible with the programmable counter and phase detector circuits. The other circuits in this loop operate the same as those in PLL #1. In this case the programmable counter is controlled by the three "MHz" selector switches and the loop reference frequency is 1 MHz. For a more complete description see section 3-13.

PLL #4

The purpose of PLL #4 is to adjust the Wide Oscillator in 1 kHz steps from 1198 MHz to 1718 MHz as the front-panel frequency selector is adjusted from 0 to 520.000.

The Wide Oscillator frequency is offset by Mixers #1 and #2 and compared to the

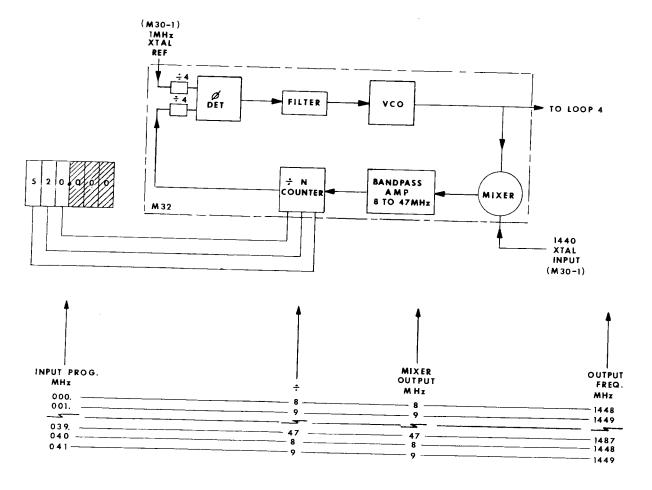
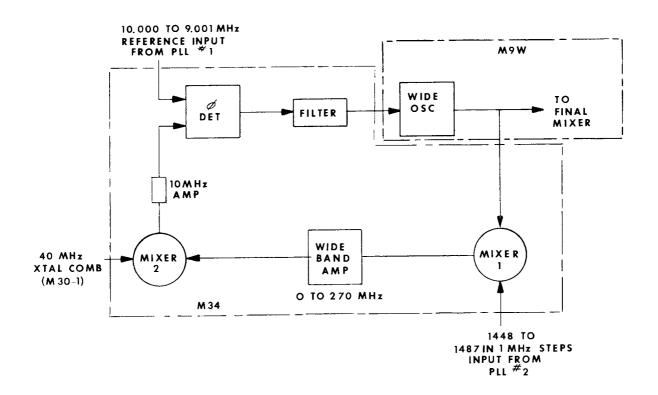



Figure 3-4. PLL #2

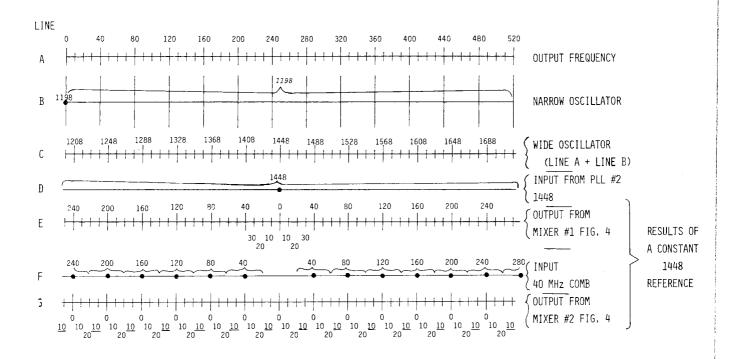


Figure 3-5. PLL #4

reference (from PLL #1) by the phase detector. A difference in phase or frequency causes an error signal to tune the Wide Oscillator until both phase detector inputs are identical. How this loop locks on a particular frequency can best be explained in three steps: 1) phase locking at 40 MHz intervals across the band, 2) phase locking at 1 MHz intervals, 3) phase locking at 1 kHz intervals. Figure 3-5 is a simplified block diagram of PLL #4.

To understand locking at 40 MHz intervals, assume temporarily that the reference frequencies from PLL #1 and PLL #2 are fixed (10 MHz and 1448 MHz respectively). Figure 3-5 shows the frequencies throughout the loop for this discussion. This step of the PLL #4 explanation can be described more clearly by considering the entire Wide Oscillator range rather than discussing single frequencies. The Wide Oscillator covers the range of 1198 to 1718 MHz as the Output frequency changes from 0 to 520 MHz. (Figure 3-5, lines A and C.)

When the Wide Oscillator range is heterodyned in Mixer #1 with 1448 MHz the difference frequency which is produced ranges from 250 to 0 to 270 MHz. (Figure 3-5, line E.) This signal is then mixed with a 40 MHz comb (all harmonics of 40 MHz) in Mixer #2. (Figure 3-5, line F.) Taking the difference between line E and F yields the repetitive frequency range from 0 to 20 to 0 MHz as shown in line G. This signal is fed to the phase detector.

The reference to the phase detector is 10 MHz but the loop will not lock on every 10 MHz output of Mixer #2. The only 10 MHz signals which will produce lock are those which would decrease in frequency if the Wide VCO tried to drift higher. Therefore at every 40 MHz interval of the output frequency an input to the phase detector would allow the loop to lock. Section 3.2.1 explains that an analog signal drives the Wide Oscillator to within three MHz of the proper frequency. Therefore, although

there are 14 possible lock points on line G, the only one selected will correspond to the analog-tuned frequency of the Wide Oscillator. The unit as described so far is capable of phase locked output at 0, 40, 80... 520 MHz. The following is an explanation of locking at 1 MHz intervals.

To allow phase locking at 1 MHz intervals, the reference frequency to Mixer #1 is made adjustable in 1 MHz steps over a 40 MHz range (1448-1487 MHz).

If, for example, this reference frequency to Mixer #1 were 1449 MHz, the input range to the phase detector would look the same except the entire range would be shifted 1 MHz to the right. Lock points would then be possible at output frequencies of 1, 41, 81 MHz, etc.

Being able to change this reference in 1 MHz steps allows phase locking from 0 to 520 MHz in 1 MHz steps.

To provide phase locking in 1 kHz steps, the PLL #4 phase detector's reference from PLL #1 is adjustable in 1 kHz steps (10.000 to 9.001 MHz). This causes the Wide Oscillator frequency to change in 1 kHz steps in order to keep the loop locked.

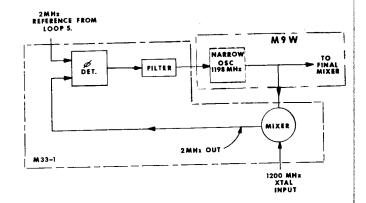
PLL #3

The purpose of PLL #3 is to stabilize the Narrow Oscillator at a frequency of 1198 MHz.

Figure 3-6 shows a simplified block diagram of PLL #3. This loop operates in the same manner as PLL #1 and PLL #2 except that it does not require the use of a programmable counter. The 1198 MHz output from the Narrow Oscillator is combined in a mixer with a 1200 MHz crystal controlled signal. This produces a 2 MHz difference signal. signal is fed to a phase detector where it is compared to a 2 MHz reference. Any difference in the input signals will produce an error voltage which is applied to the Narrow Oscillator (VCO) to correct the frequency error.

PLL #5

PLL #5 supplies the reference for PLL 3. Unlike a standard phase-locked loop the VCO can be modulated. In AM and CW the VCO is locked on 2 MHz. In the FM mode the VCO is modulated but the loop ignores modulation which is faster than 50 Hz; thus the center frequency remains locked.


The loop includes a voltage controlled oscillator, a divider for reducing the frequency from 2 MHz to 2 kHz, a phase detector and a filter for the phase detector output. If the variable input to the phase detector deviates from the reference frequency (slower than 50 Hz) the phase detector sends an error signal to the VCO to correct the frequency.

CRYSTAL REFERENCE

All the reference frequencies for the phase-locked loops are derived from a single 40 MHz crystal source by means of appropriate multiplication or division.

3.2.3 SUBASSEMBLY DESCRIPTIONS

The overall block diagram discussed in this section describes basically how the instrument functions as a unit. The unit is made up of ten module assemblies and three printed circuit card assemblies. These can be identified in Figure 5-6. Sections 3.3 thru 3.15 describe the operation of each subassembly. The name of the subassembly describes, to an extent, the primary function it performs.

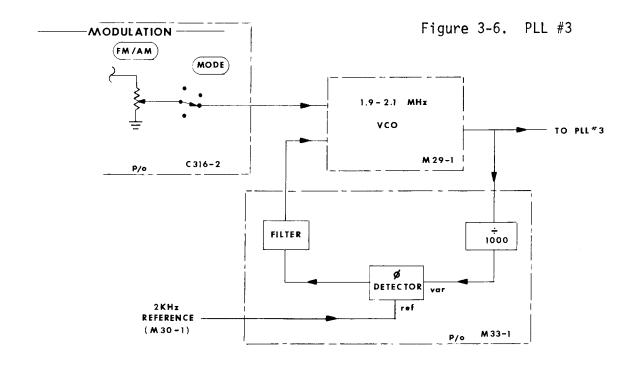


Figure 3-7. PLL #5

3.3 C315 - METER BOARD

The primary function of this assembly is to provide the program voltage to the leveler circuit for the RF amplifier. It also includes the RF output level meter which appears through the instrument front panel. See Figure 3-8.

3.3.1 LEVEL PROGRAM

During CW operation of the instrument, the level program is controlled by the VERNIER on the front panel. The output of this control goes to two range calibration circuits, "High" and "Low". The range calibration circuits convert the voltage from the VERNIER to a voltage level appropriate to drive the leveler circuit in the M10W.

The "Low" circuit provides the program for all ranges of the detented power

output dial except +10 dBm. At "+10" the level program is taken from the "High" circuit. The "High" level program enables the full gain capabilities of the M10W to be used when the output is not amplitude modulated.

3.3.2 MODULATION

The modulating signal from assembly C316-2 is applied to the VERNIER which ultimately causes the RF level to change. The leveler in the M10W does not cause the RF level to respond linearly to changes in the level program voltage. To compensate for this, a stage is included in C316-2 to shape the modulation signal before being applied to the VERNIER.

3.3.3 METER

The output level meter (front panel) is controlled by the level program from the

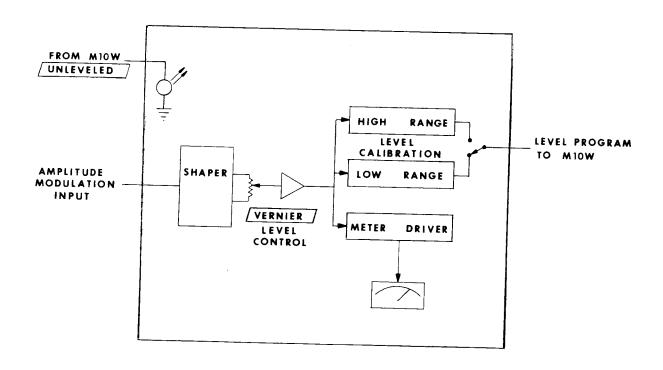


Figure 3-8. C315 - Meter Board

VERNIER. The meter and its driver circuit are designed to display a reading which corresponds to the actual RF level from the M10W.

3.3.4 "UNLEVELED" LIGHT

A light emitting diode is mounted on this assembly and appears on the front panel of the instrument. Refer to the M10W description for an explanation of the circuit driving this light.

3.4 C316-2 - MODULATION BOARD

This assembly provides the modulating signals used in the AM and FM modes.

The front-panel Accuracy lights and associated circuitry are also on this assembly. See Figure 3-9.

3.4.1 MODULATING SIGNALS

The AM or FM modes are achieved by simply routing essentially the same signal to the appropriate circuitry by means of the front-panel MODE switch.

The front - panel MODULATION FREQ switch selects one of four sources of modulating frequency, one external and three internal. The internal signal can be selected from one of two CW oscillators or a manually variable DC control.

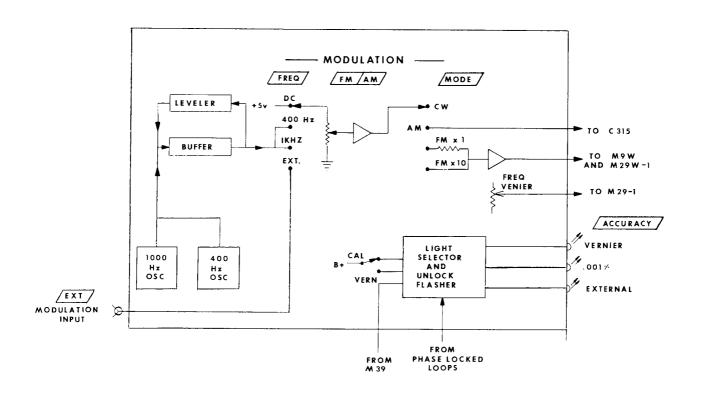


Figure 3-9. C316-2 - Modulation Board

The two internal oscillators are amplified/leveled by the same circuit for simplicity but separately energized by the FREQ switch. The oscillators are twin T oscillators, one is at 400 Hz the other is at 1 kHz.

3.4.2 ACCURACY LIGHTS

Which LED is lit is determined by the CAL switch on the frequency VERNIER or an input from an M39. If any of the phase-locked loops unlock, the energized LED is made to flash by an IC timer which is activated by a DC level from any of the five phase locked loops in the instrument.

3.5 DPS-2 - POWER SUPPLY

The DPS-2 provides DC power for the rest of the instrument. See Figure 3-10.

3.5.1 TRANSFORMER & FILTERS

The transformer steps down the line voltage to appropriate levels for the three circuits. Full wave rectifiers and filter capacitors convert this voltage to DC.

3.5.2 +18 V SUPPLY

The +18 V circuit has a zener diode pre-regulator. This feeds a high accuracy, highly stable, IC voltage regulator. The +18 V supply includes current limiting.

3.5.3 -18 V SUPPLY

This circuit compares the +18 and -18 volt outputs and holds the difference in their magnitudes to zero. A circuit is also included to limit the current output of the -18 V supply.

3.5.4 +7.3 V SUPPLY

This circuit is another comparator circuit referenced to the +18 V supply. It is a pre-regulator which supplies other voltage regulators throughout the instrument.

3.6 M2M - SWEEP DRIVE

Figure 3-11 shows the block diagram of the M2M circuit.

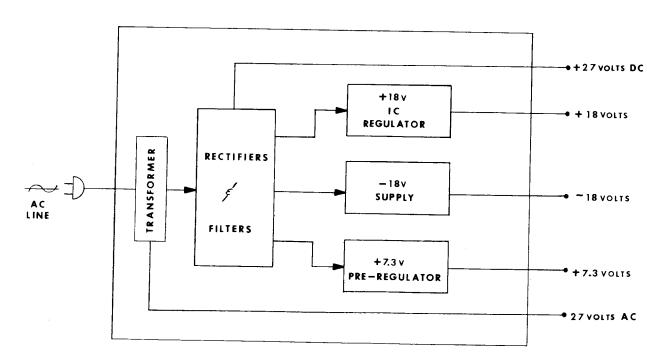


Figure 3-10. DPS-2 - Power Supply

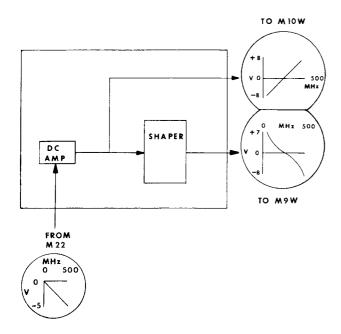


Figure 3-11. M2M - Sweep Drive

The analog tuning signal from the M22 is "shaped" before driving the M9W wide oscillator. This module also provides the varactor drive voltage to the M10W tracking filter. See section 3.8.1

3.6.1 DC AMP

This circuit inverts and slightly amplifies the input voltage for use by the M10W and the M2M shaper circuit. The graphs on the block diagram show the voltages at the input and outputs of the M2M over the range of instrument output frequencies.

3.6.2 SHAPER CIRCUIT

This is an inverting DC amplifier which amplifies the input by a smaller factor for smaller magnitude inputs.

Shaping this analog voltage compensates for the nonlinear change in capacitance of the varactor diodes in the M9W oscillator circuit.

3.7 M9W - SWEEP OSCILLATOR

The M9W is the origin of the instrument's RF output frequency. This frequency is

generated by heterodyning the signals from two higher frequency voltage controlled oscillators. See Figure 3-12.

3.7.1 MIXER

The narrow oscillator applies a signal of 1198 MHz to the mixer. The wide oscillator provides between 1199 and 1718 MHz. The difference (1-520 MHz) is applied to a wide band pre-amp and then sent to the M10W.

3.7.2 WIDE OSCILLATOR

The wide range of oscillation is achieved by applying to varactor diodes in the tank circuit an analog signal which is dependent upon the setting of the frequency switches on the instrument's front panel. An additional signal is applied to this VCO from the phase detector in the M34. This is the fine tuning signal which locks the wide oscillator on the proper frequency.

3.7.3 NARROW OSCILLATOR

This oscillator also uses a varactor diode so that the frequency can be voltage controlled for phase locking and for FM operation.

The coarse modulating signal (FM) is applied to the varactor from the modulation board (C316-2). The frequency of this oscillator is further controlled by a "fine tuning" bias voltage from the M33-1 phase detector. The deviation can be controlled up to 100 kHz.

3.7.4 LEVELERS

This module contains three RF leveling circuits as shown in the diagram. These maintain a constant amplitude RF over the frequency range and with temperature variation. The output of a peak detector is compared to a constant DC level. Any error is amplified and applied to a PIN diode attenuator in series with the RF signal.

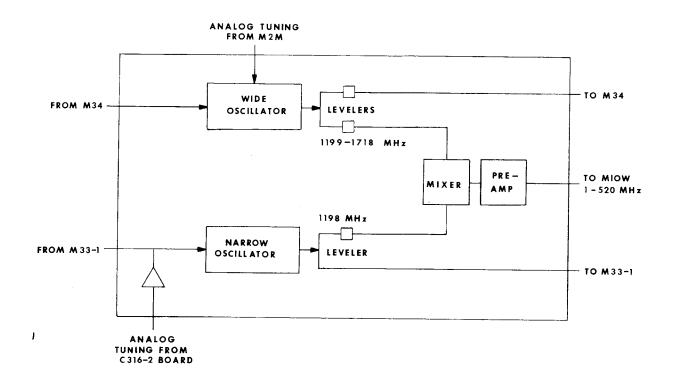


Figure 3-12. M9W Sweep Oscillator

3.8 M10W - OUTPUT AMPLIFIER

The main function of the M10W module is to amplify the RF signal from the M9W to a level programmable between -7 and +13 dBm. A leveler circuit maintains a constant amplitude output signal over the wide frequency range. The Unleveled light driver causes the front - panel light to glow when the leveler circuit exceeds its proper operating range. See Figure 3-13.

3.8.1 AMPLIFIER

This section is a six transistor, wide band amplifier which can increase the RF by about 23 dB. The analog signal from the M2M is applied to the tracking filter varactor diodes in the output of the amplifier section. This filter attenuates spurious and harmonic signals higher than the fundamental but as close to it as possible as the frequency is programmed from 1 to 520 $\ensuremath{\text{MHz}}\xspace$.

3.8.2 LEVELER

The leveler uses a peak detector, differential amplifier and a PIN diode attenuator. The peak detector is fed from the RF output. The resulting level is compared to a DC (or AM) reference by the differential amp which supplies the control current to the PIN diode attenuator. If the detected RF output deviates from the reference level, the signal to the PIN diode causes the input to be decreased or increased.

In addition to providing a flat frequency response, the leveler allows for electronic control of the RF output amplitude by varying the DC reference. The reference comes from the meter board (C315).

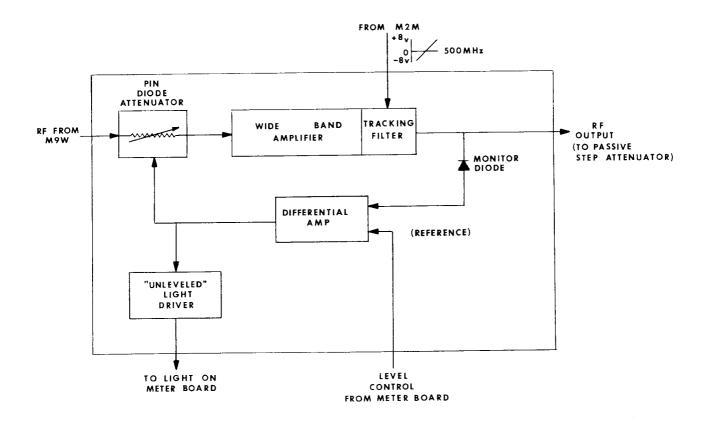


Figure 3-13. M10W - Output Amplifier

3.8.3 "UNLEVELED" LIGHT DRIVER

When the differential amp in the leveler circuit is putting out a voltage which would cause the PIN diode attenuator to be at its high or low resistance limit, the leveling circuit can no longer be effective. The above voltage levels, which are applied to the unlevel light driver, are adequate to turn on a source of current for the indicator which appears through the front panel.

3.9 M22 - DIGITAL TO ANALOG CONVERTER

This module provides two analog outputs which correspond to the frequencies selected by the "MHz" switches (left of decimal point) on the instrument's front panel. One output has a linear voltage versus frequency curve. The other output is linear from 0 to 39 MHz but repeats the analog voltages every 40 MHz. See Figure 3-14.

3.9.1 LINEAR D/A

The front-panel "MHz" switches have BCD output which indicates the desired frequency to the M22. For every logic "1" that is present a current is applied to the summing amp. The more significant the activated input, the more current results. For example, the 4's line (when activated) supplies twice the current of the activated 2's line. The eleven current sources are connected to the summing amp which produces the analog voltage which represents the sum of its "weighted" inputs.

3.9.2 REPEATING D/A

A summing amp with weighted inputs performs like the one above. The summing amp converts the weighted currents into a corresponding voltage output. The repetition of the output is achieved by using the five least significant BCD

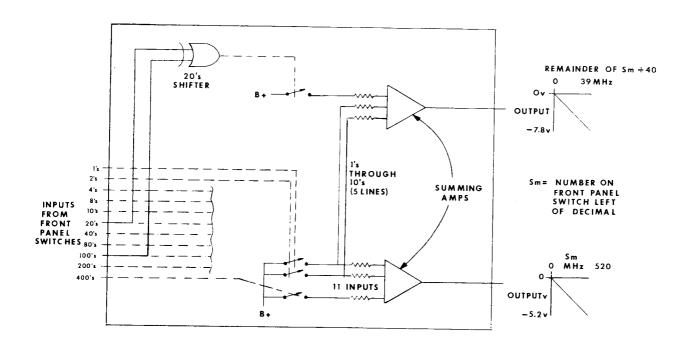


Figure 3-14. M22 - Digital to Analog Converter

lines and an artificial 20's line. These six inputs repeat themselves every 40 MHz as the front-panel switches are changed in 1 MHz steps from 1-520 MHz. A 20's line is necessary in order to represent inputs from 20 to 39, but the original 20's line doesn't repeat its sequence with every 40 MHz change in programmed frequency. See Table 3-1. The proper program for the summing amp is provided by inverting the 20's line whenever the 100's line is activated.

3.10 M29-1 - FM REFERENCE

The M29-1 is a voltage to frequency converter, the output of which is used as a phase lock reference in the M33-1. The module includes a voltage variable current source which feeds (determines the frequency of) a square wave oscillator. (See Figure 3-15.) Zero volts in yields 2 MHz out.

The M29-1 is the VCO for phase-locked loop five. The input to the M29-1 from the phase detector is essentially added

TABLE 3-1. 20's CONVERSION

"MHz"	Original	Artificial
Switch	20's	20's
Setting	Line	Line
0	0	0
20	1	1
40	0	0
60	1	1
80	0	0
100	0	1
120	1	0
140	0	1
160	1	0
180	0	1
200	0	0
. 1		

to the modulation input. The Frequency VERNIER voltage is also added here. (VERNIER input becomes zero volts when VCO is locked).

3.10.1 CURRENT SOURCES

This circuit provides both a positive and a negative source of current. The

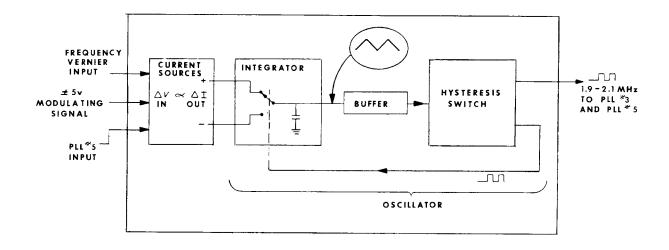


Figure 3-15. M29-1 - FM Reference

positive source is referenced to the negative source so that the instantaneous currents in both sources are equal.

The change in output current is directly proportional to the change in input voltage to the circuit. The input voltage may vary between -5 and +5 volts. The circuit is designed for a very linear graph of current-out vs. voltage in.

3.10.2 OSCILLATOR

The square wave output is produced by the combination of an integrator and a hysteresis switch. The integrator converts a square wave to a triangle wave. The triangle wave causes the hysteresis switch to produce the square wave which is fed back to the integrator.

The integrator is made up of a current switch and a capacitor. The square wave applied to the current switch causes a square current signal to be applied to the capacitor.

Positive constant current produces an increasing voltage ramp on the capacitor and negative constant current produces a decreasing voltage ramp. For a square wave input, therefore, the output is a

triangle wave.

Changing the magnitude of the "currents", by changing the input voltage to the module, changes the rate at which the capacitor charges and discharges to the hysteresis points thus the frequency of oscillation changes.

3.11 M30-1 - CRYSTAL REFERENCE

This module supplies reference frequencies at 1 kHz, 2 kHz, 1 MHz, 10 MHz, 40 MHz and its harmonics, 1200 MHz (from 120 comb) and 1440 MHz to the phase locked loops in the instrument. These signals are produced by a 40 MHz crystal oscillator and a series of dividers and multipliers. See Figure 3-16.

3.11.1 40 MHz OSCILLATOR

This crystal oscillator is the heart of the accuracy of the frequency determining circuits in the instrument. It is temperature compensated for frequency stability. A varactor diode is included to enable this oscillator to be phase locked to a high stability reference. A leveler circuit causes the oscillator output level to be the same in all M30 modules.

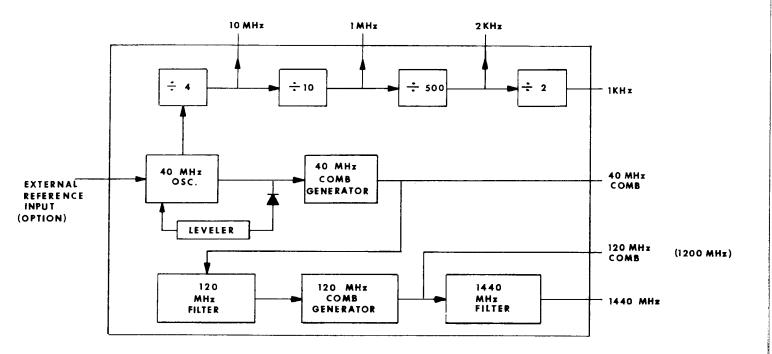


Figure 3-16. M30-1 - Crystal Reference

3.11.2 DIVIDERS

The frequencies below 40 MHz are produced by a series of TTL counters. A "divide by 4" produces the 10 MHz output for the phase-locked loop in the optional high stability reference. This frequency is further divided as shown in Figure 3-16 to provide the 1 MHz, 2 kHz and 1 kHz outputs.

3.11.3 MULTIPLIERS

The 40 MHz CW is fed to a harmonic generator which produces the "comb" output.

From the 40 MHz comb, 120 MHz is selected and applied to another harmonic generator. A sample of the 120 MHz comb output is also fed to a filter which provides the 1440 MHz output.

3.12 M31 - kHz STEPS

The input to this module is the BCD data from the front-panel "kHz" switches (to

the right of the decimal point). The output frequency is (10 MHz - S_k kHz), where S_k is the number indicated by the kHz switches. If the FREQUENCY is set to 333.333 MHz, for example, the M31 output is 9.667 MHz. The block diagram of the M31 is shown in Figure 3-17.

3.12.1 VCO

The output frequency is generated by a voltage controlled oscillator which is coarsely tuned by a D/A converter and fine tuned by inclusion in a phase locked loop within the module.

3.12.2 D/A CONVERTER

The BCD information from the frontpanel switches is converted to an analog signal which biases the varactor diode in the VCO.

Each BCD line corresponds to a different current source which is switched on by a logic "1" on its BCD line. The amount

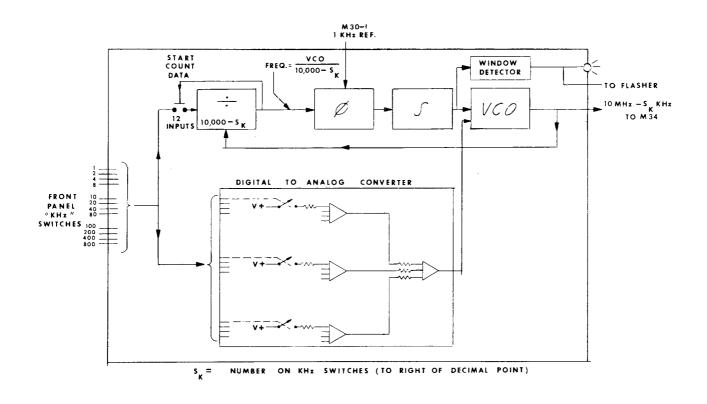


Figure 3-17. M31 - kHz Steps

of current from a source depends on the significance of its corresponding BCD line. For example, when the 4's line is activated, twice as much current is supplied as when the 2's line is activated. Summing amps add the weighted inputs and give the appropriate analog voltage output.

3.12.3 PHASE-LOCKED LOOP

Including the VCO in a phase-locked loop allows the accurate programmability. The fine tuning voltage comes from the phase detector and is filtered by an integrator stage. The M30 provides the 1 kHz reference to the phase detector. A sample of the VCO output is fed back to the programmable divider which feeds the lower frequency signal to the phase detector. When the loop is locked the divider output is 1 kHz.

In order for the M31 to perform properly, the divider is designed to divide the VCO frequency by $(10,000-S_k)$, where S_k is the number set on the "kHz" switches. The divider counts the number of cycles at its input and puts out a pulse when the count reaches 10,000. The starting count is the number shown on the kHz switches. For example, if the instrument is set for 222.500 MHz this circuit would divide by 9,500 (count from 500 to 10,000). Therefore, the variable input to the phase detector would be correct only if the VCO put out 9.500 MHz.

3.12.4 UNLOCK INDICATOR

When the phase-locked loop is unlocked the LED on top of the module will light and the front-panel Accuracy light will flash.

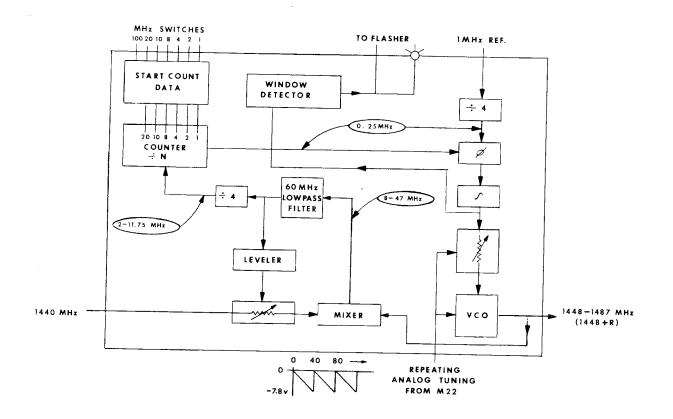


Figure 3-18. M32 - MHz Steps

A window detector monitors the voltage level which is being fed from the phase detector to the VCO. If the voltage exceeds the normal operating range, power is applied to the module light and the flasher circuit (on assembly C316-2).

3.13 M32 - MHz STEPS

The M32 provides for the M34, a reference frequency which corresponds to the setting on the "MHz" switches. block diagram, Figure 3-18. output range is 1448 to 1487 MHz which repeats itself with every 40 MHz change of the frequency switches. Any specific M32 output relates to the "MHz" switch setting (S_m) by the equation (Output = (1448 + R) MHz), where R is the Remainder of dividing S_m by 40. If the front panel is set, for example, for 333.000. R would be 13 (333.000 \div 40 = 8 with a Remainder of 13). The output of the M32 would then be 1448 + 13 = 1461 MHz.

3.13.1 VCO

The output of the M32 is produced by a voltage controlled oscillator. This VCO is coarsely tuned by the repeating analog output of the M22. Fine tuning is the result of including the VCO in a phase-locked loop. In addition to the VCO the phase-locked loop includes a phase detector and programmable divider.

3.13.2 PHASE DETECTOR

The fixed reference frequency to the phase detector is 250 kHz. The variable input from the counter provides the error signal which represents the deviation of the VCO from the desired output. When both inputs to the phase detector are 250 kHz the loop is locked.

If the VCO output frequency is high, the variable phase detector input is high. This results in a positive output which

causes a negative output from the integrator. More negative bias to the varactor increases the tuning capacitance thus lowering the VCO frequency.

A voltage controlled attenuator between the integrator and the VCO keeps the open loop gain of the phase-locked loop relatively constant over the programmed frequency range. This allows the loop noise to be minimized.

3.13.3 PROGRAMMABLE DIVIDER

In order for the proper VCO output frequency to produce 250 kHz to the phase detector it undergoes three conversions. It is first heterodyned with 1440 MHz yielding between 8 and 47 MHz. This frequency is then divided by four so that it will fall within the frequency range of the +N counter.

When the loop is locked the input to the +N counter will be N times 250 kHz. Changing N (by changing the MHz switches) ultimately causes the VCO to change in

order for the loop to stay locked. "N" ranges from 8 to 47. In order for N to be between 8 and 47, the counter must count to 47 and start counting as determined by the "start count data". Data input is 39 for N=8 and 0 for N=47.

The "Start Count Data" circuit converts the BCD negative logic from the MHz switches into BCD positive logic according to the formula: "start count" = 39-R. (R is defined above.)

3.13.4 UNLOCK INDICATOR

When the phase-locked loop is unlocked the LED on top of the module will light and the front-panel Accuracy light will flash.

A window detector monitors the voltage level which is being fed from the phase detector to the VCO. If the voltage exceeds the normal operating range, power is applied to the module light and the flasher circuit (on assembly C316-2).

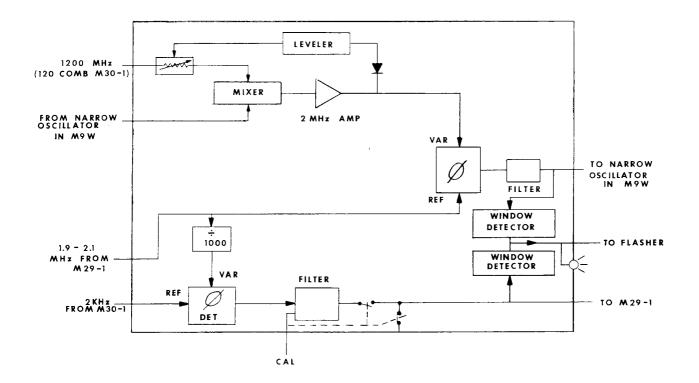


Figure 3-19. M33-1 - Narrow Oscillator Lock

3.14 M33-1 - NARROW OSCILLATOR LOCK

The M33-1 contains the circuits to phase lock the narrow oscillator in the M9W (loop 3) and the M29-1, FM reference, (loop 5). As explained in section 3.2.2 loop 5 provides the reference frequency for loop 3.

3.14.1 PHASE DETECTOR FOR LOOP #3

This circuit compares the reference frequency to the variable frequency which represents the M9W VCO output. If the VCO is too high, for example, the phase detector puts out a more positive voltage which is filtered and inverted by an integrator and applied to the VCO (narrow oscillator) to lower the frequency.

3.14.2 MIXER

The phase detector can not operate at UHF frequencies so the VCO is mixed with 1200 MHz CW. This provides an offset frequency which is the variable input to the phase detector. The deviation

of this variable signal from 2 MHz is precisely the same as the deviation of the VCO from 1198 MHz.

3.14.3 PHASE DETECTOR FOR LOOP #5

This circuit compares the 2 kHz reference from the M30-1 to the variable frequency which is the M29-1 output divided by 1000. The variable frequency is divided by 1000 so that even when M29-1 is frequency modulated the variable frequency will remain in the capture range of the phase detector. Any frequency modulation (above 50 Hz) is filtered out by the integrator filter and the error voltage is fed to the M29-1.

3.14.4 UNLOCK INDICATOR

Window detectors are fed by the integrator outputs. If the integrators put out a voltage outside their normal operating range the window detectors apply voltage to the module's unlock indicator and to the flasher circuit on the Modulation board assembly.

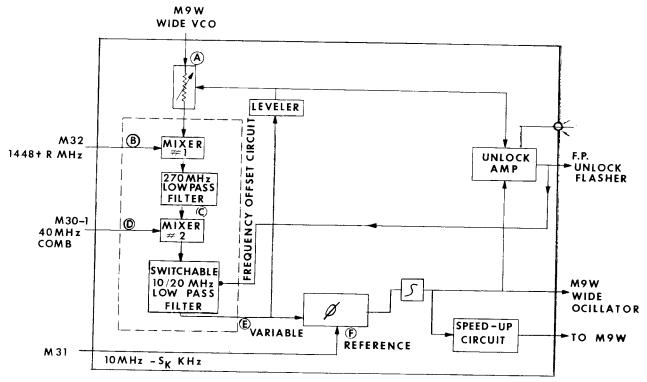


Figure 3-20. M34 - Wide Oscillator Lock

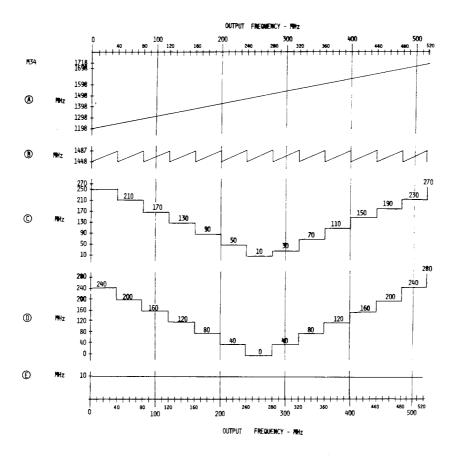


Figure 3-21. M34 Signal Frequencies

3.15 M34 - WIDE OSCILLATOR LOCK

This module provides the fine tuning program for the wide oscillator in the M9W. Figure 3-20 is the block diagram of the The letters A thru F relate the M34. signals at the associated points in the module to the graphs A thru F in Figures 3-18 and 3-19. The M34 phase locks the VCO to 1198 MHz plus the frequency indicated on all six front-panel switches. The frequency offset circuit converts the frequency of the VCO to a lower frequency which retains the frequency error information for use by the phase detector. In addition to the frequency offset circuit and the phase detector, several auxillary circuits are included.

3.15.1 PHASE DETECTOR

The phase detector compares the "offset" VCO frequency to the reference frequency from the M31. (Refer to the description

of the M31 for a more detailed description of this 10.000 - 9.001 MHz reference.)

The phase detector output voltage goes positive or negative to ultimately drive the wide oscillator higher or lower in frequency until both inputs to the phase detector are the same frequency. The integrator serves as a low pass filter for the phase detector.

3.15.2 FREQUENCY OFFSET CIRCUIT

The VCO error information must be converted to a frequency useable by the phase detector. This conversion is made by mixer #1, a 270 MHz low pass filter, mixer #2 and a 10 MHz low pass filter. Refer to Figures 3-20, 3-21 and 3-22 for descriptions of signals.

Mixer #1 heterodynes the VCO frequency with the "MHz steps" reference fre-

quency (1448 + R) MHz. The difference frequency, |1448 + R - VCO|, is below 270 MHz. This signal is sent to mixer #2 where it is heterodyned with the 40 MHz comb. For any output frequency graph D in Figure 3-21 shows only the comb frequency which will yield the desired output (below 20 MHz) of mixer If the loop is locked, mixer #2 will produce a 10 MHz difference as shown in Figure 3-21 (assuming the "kHz" switches are set for 000). Figure 3-22 shows signals A thru F for a case when the kHz switches are not 000.

The filter after the mixer #2 blocks all the outputs of the mixer except the lower frequency signal containing the VCO error information. When the unit is unlocked the filter passes up to 20 MHz (to be able to capture over the 20 MHz range allowed for analog tuning). Once the loop is locked, the filter decreases to 10 MHz to further eliminate phase-locked loop related spurious signals.

3.15.3 AUXILIARY CIRCUITS

The "speed-up circuit" is activated when the phase-locked loop becomes unlocked. The output of this circuit is sent to the M9W to cause the VCO to be tuned faster by the analog voltage.

The "unlock" amp monitors both the tuning voltage from the phase detector and the leveler voltage to detect an unlocked condition of the M34. When unlock occurs, it sends a voltage to the flasher circuit.

The leveler circuit maintains a constant input amplitude to the phase detector by controlling the amplitude of the input from M9W wide oscillator. The input to the phase detector (about 10 MHz) is peak detected and compared to a DC reference in the leveler circuit. The leveler circuit controls a PIN diode attenuator which is between the VCO input and mixer #1.

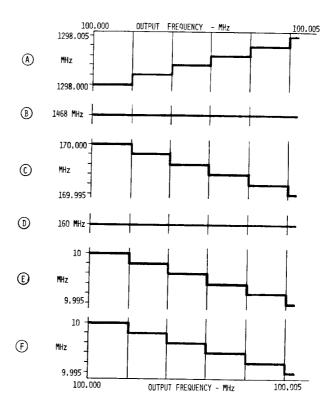


Figure 3-22. M34 - Frequencies (Expanded)

		•

SECTION 4 PERFORMANCE TESTS

4.1 INTRODUCTION

The purpose of the performance tests in the following paragraphs is to verify that the Model 3001 Signal Generator meets its published specifications (paragraph 1.2). Individual performance tests consist of: the specification to be verified, the method of testing, a list of equipment required, and a detailed test procedure including in some cases a simplified setup drawing. If optional features are installed in the instrument refer to Section 8 for possible changes to the performance test procedure.

Critical specifications for each item of test equipment are listed in Table 4-1 of Recommended Test Equipment. Except as detailed settings of test equipment apply to performance test procedures, all other test equipment operating details are omitted.

The Signal Generator should have its top and bottom covers installed for the

performance tests. All of the tests can be performed without access to the internal controls. Before applying power to the Signal Generator see Section 2 for details of electrical installation. The line voltage should be maintained at 115 or 230 volts ±10%, 50 or 60 Hz throughout the tests. The performance test procedures are begun after a two-hour minimum warmup of the Signal Generator in a +20 to +30° C ambient temperature range.

A copy of the Performance Test Record (PTR) is provided at the end of this section for convenience in recording the performance of the Model 3001 during performance tests. It can be filled out and used as a permanent record for incoming inspection or it can be used as a guide for routine performance testing. The PTR lists the paragraph, test, basic control settings and limits. All of the tests refer to this test record.

TABLE 4-1. RECOMMENDED TEST EQUIPMENT FOR MODEL 3001 PERFORMANCE TESTS

INSTRUMENT	CRITICAL REQUIREMENT	RECOMMENDED
Digital Multimeter	10 VDC: \pm (0.07%R+0.02%FS)	Dana 4300
Distortion Analyzer	Range: 5 Hz to >25 kHz	HP334A
Frequency Counter	Range: to 525 MHz	нР5300В/5303В
Function Generator	Level: 10 Vpp sine wave into 600 ohm load Range: >0.2 Hz to >25 kHz Distortion: <1%	Wavetek 130

TABLE 4-1. (Cont'd)

Power Meter	Range: 10 to >520 MHz Input Level: -7 to +13 dBm Accuracy: +1% FS	HP435A/8481A
Modulation Meter	Range: 5 to >520 MHz Residual FM: <100 Hz (RMS) (quiet room) Residual AM: <0.1% (RMS) (in CW) AM Accuracy: ±(2%R+1%FS)	AFM2 Radiometer
Oscilloscope	Range: DC to 2 MHz Sensitivity: 2 V/cm (AC coupled)	Tektronix D10/ 5A18N/5B10N
Spectrum Analyzer	Range: 500 kHz to 1200 MHz Display: 2 dB log and 10 dB log	HP8554L/8552B/ 141T
Precision Attenuator Pads	10, 20, 30, and 40 dB	Weinschel 50-10, 50-20, 50-30, and 50-40
Wideband Amplifier	Range: 1 to 520 MHz Gain: 26 dB Impedance: 50 ohm	HP8447D
Sweep/Signal Generator	Range: 1 to 520 MHz	Wavetek 2001
VSWR Bridge	5 to 525 MHz, 50 ohm 50 dB directivity	Wiltron 60N50
Coaxial Short	Type N female	HP11511A
Coaxial Termination, 50 ohm	Type N male, 1.05 SWR	нр908А
Loop Probe	See Figure 4-9.	

4.2 FREQUENCY RANGE AND RESOLUTION TEST

SPECIFICATION RANGE

 $1\ \mathrm{MHz}$ to 520 MHz selectable in $1\ \mathrm{kHz}$ steps.

READOUT

6 digit Lever/Indicator switches

RESOLUTION

1 Kt

METHOD

A frequency counter is used to measure the frequency range and the frequency resolution. All frequencies in CW and AM modes between 1 and 520 MHz are selected by front-panel Lever/Indicator switches. Each of the digits of the frequency selector (a total of 56) will be tested. The 0 through 9 kHz digits provide 1 kHz resolution.

EQUIPMENT

Frequency Counter

HP5300B/5303B

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER

FREQUENCY selector

MODULATION MODE

MODULATION FREQ

MODULATION FREQ

MODULATION FM/AM

OUTPUT VERNIER

OUTPUT step attenuator

CAL

OSO.000 MHz

CW

(Inactive in CW MODE)

Fully Clockwise

+10 dBm

- 2. Connect the Signal Generator RF out connector to the 50 ohm input of the frequency counter. Set the counter to read frequency to seven digits.
- 3. Observe the frequency counter reading. Increase the setting of the Signal Generator FREQUENCY selector in 1 kHz steps and verify that the frequency counter reading increases by 1.00 kHz +1 count for each step increase from 1 through 9 kHz. The foregoing procedure verifies the 1 kHz resolution specification.
- 4. Repeat the procedure in step 3 for all other step increases indicated in the table below beginning with the 10 kHz digits. If the actual counter frequency increase per step is equal to the allowable increase per step +1 count for each of the steps indicated in the table, place a check mark in the applicable space on line 1 of the PTR.

FREQUENCY Selector		Frequency Counter Reading		
Range (MHz)	Increase per step	No. Digits	Allowable Increase per step ±1 count	
050.000-050.009 050.000-050.090 050.000-050.900 050.000-059.000 001.000-091.000	1 kHz 10 kHz 100 kHz 1 MHz 10 MHz	7 7 6 5	1.00 kHz 10.00 kHz 100.0 kHz 1.000 MHz 10.000 MHz	
020.000-520.000	100 MHz	6	100.00 MHz	

4.3 FREQUENCY ACCURACY TEST

SPECIFICATION

ACCURACY

All modes (CW, AM and FM) +0.001% (+0.001% +10 kHz when frequency VERNIER is not in CAL position. Frequency VERNIER range is +5 kHz.)

PERFORMANCE TESTS

METHOD

A frequency counter is used to measure frequency accuracy. With the frequency VERNIER in CAL position all carrier frequencies between 1 and 520 MHz are derived from a single crystal-controlled oscillator. The Signal Generator will be tested at one CW frequency to verify that the crystal-controlled oscillator operates within specified limits.

When the frequency VERNIER is not in CAL position, all carrier frequencies are derived from a voltage-controlled oscillator in addition to the crystal-controlled oscillator. Frequency accuracy with the frequency VERNIER not in CAL position will be measured by utilizing DC modulation equal to maximum peak sinusoidal modulation in both FM modes. The frequency VERNIER range will be tested in CW mode.

EQUIPMENT

Frequency Counter

HP5300B/5303B

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER CAL

FREQUENCY selector 040.000 MHz

MODULATION MODE CW

MODULATION FREQ (Inactive in CW MODE)
MODULATION FM/AM (Inactive in CW MODE)

OUTPUT VERNIER Fully Clockwise

OUTPUT step attenuator $+10~\mathrm{dBm}$

- 2. Connect the $50\ \mathrm{ohm}$ input of the frequency counter to the Signal Generator RF out connector.
- 3. The counter should read between 39,999.59 and 40,000.41 kHz. Record the counter reading to seven places on line 2 of the PTR.
- 4. Set the Signal Generator controls as follows:

Frequency VERNIER 0 kHz

FREQUENCY selector 001.000 MHz

MODULATION MODE FMx1
MODULATION FREQ DC
MODULATION FM/AM 10 kHz

- 5. The frequency counter should read between 999.99 and 1,020.01 kHz. Record the counterreading to 6 places on line 3 of the PTR.
- 6. Set the Signal Generator MODULATION MODE to FMx10.
- 7. The frequency counter should read between 1,089.99 and 1,110.01 kHz. Record the counter reading to $\,6\,$ places on line 4 of the PTR.

- 8. Set the FREQUENCY selector to 002.000 MHz.
- 9. Set the frequency VERNIER to +3 kHz, and make a note of the counter reading in Hz.
- 10. Set the frequency VERNIER to 0 kHz, and subtract the frequency counter reading in Hz from the reading in step 9. The frequency difference should be between 2500 and 3500 Hz. Record the difference on line 5 of the PTR.
- 11. Set the frequency VERNIER to $-3~\mathrm{kHz}$, and subtract the frequency counter reading in Hz from the reading at 0 kHz in step 10. The frequency difference should be as in step 10. Record the difference in Hz on line 6 of the PTR.

4.4 FREQUENCY STABILITY TEST

STABILITY

All modes (CW, AM and FM) <0.2 ppm/hour (500 Hz per 10 min when frequency VERNIER is not in CAL position.)

METHOD

The frequency stability is measured with a frequency counter at the indicated time intervals after a 2 hour minimum warmup.

EQUIPMENT

Frequency Counter

HP5300B/5303B

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER CAL
FREQUENCY selector 520.000 MHz
MODULATION MODE CW
MODULATION FREQ (Inactive)
MODULATION FM/AM (Inactive)
OUTPUT VERNIER Fully Clockwise

OUTPUT step attenuator +10 dBm

- 2. Connect the $50\,$ ohm input of the frequency counter to the Signal Generator RF out connector.
- 3. Allow the Signal Generator towarm up for two hours minimum. Record the frequency counter readings to nine-places at 15-minute intervals for a one-hour period. The difference between the maximum and minimum readings in the one-hour period should not exceed 104 Hz. Record the difference between the maximum and minimum readings in Hz on line 7 of the PTR.
- 4. Set the Signal Generator frequency VERNIER to 0 kHz, the MODULATION MODE to FMx1, and MODULATION FREQ to DC and adjust the MODULATION FM/AM control to 10 kHz.

PERFORMANCE TESTS

5. After a one-minute interval record the frequency counter readings to nine-places at five-minute intervals for a tenminute period. The difference between the maximum and minimum readings in the ten-minute period should not exceed 500 Hz. Record the difference between the maximum and minimum frequency readings in Hz on line 8 of the PTR.

4.5 OUTPUT LEVEL ACCURACY TESTS

SPECIFICATION

Power Level +13 to -137 dBm (1 V to 0.03 μ V)

Attenuator Range Continuously adjustable in 10 dB steps and an 11 dB VERNIER.

Output level is indicated on a front-panel meter calibrated

in dBm and volts RMS.

Total Level +1.25 dB (+13 to -7 dBm) Accuracy +1.95 dB (-7 to -77 dBm) +2.75 dB (-77 to -137 dBm)

Accuracy Breakdown

Flatness +0.75 dB (+13 to -7 dBm)

Output Meter +0.5 dB

Step Attenuator ± 0.5 dB to 70 dB (± 0.2 dB calibration error)

+1.0 dB to 130 dB (+0.5 dB calibration error)

METHOD

The ± 1.25 dB level accuracy between ± 1.3 and ± 7 dBm consists of the sum of the output meter error (± 0.5 dB) and the flatness (± 0.75 dB). Both errors are measured with a power meter.

The output meter error is measured at $50~\mathrm{MHz}$ in two $10~\mathrm{dB}$ output ranges (+13 to +3 dBm and +3 to -7 dBm).

The flatness is measured relative to 50 MHz in 10 MHz steps between 10 and 520 MHz at \pm 12, \pm 3 and \pm 7 dBm output levels.

The level accuracy below -7 dBm depends upon the output step attenuator error in addition to the output meter error and the flatness.

The output step attenuator is a combination of pi-pad sections of 10, 20, 30, 30 and 40 dB. These five pi-pads are programmed by cams to provide 0 to 130 dB of attenuation in 10 dB steps as shown in the table below.

OUTPUT STEP ATTENUATOR POSITION	ACTIVE	STEP A	TTENUAT	OR PADS	(X)
<u>dBm</u>	10 dB	20 dB	30 dB	<u>30 dB</u>	40 dB
+ 10					
0					
- 10	x				
- 20		х			
- 30			x		
- 40	х		х		
– 50		х	х		
- 60			х	х	
- 70	x		х	х	
- 80		х	х	х	
- 90		x		x	х
-100			x	х	х
-110	x		х	х	х
-120		х	х	х	х
-130	x	x	х	x	х

Note that no step attenuator pads are active in the $+10~\mathrm{dBm}$ and 0 dBm positions. A leveled pin-diode attenuator reduces the output level by 10 dB in all positions of the output step attenuator below $+10~\mathrm{dBm}$. The output level over the entire range of $+13~\mathrm{dBm}$ to $-137~\mathrm{dBm}$ including an 11 dB VERNIER is controlled by the pin leveler system.

The output step attenuator error is measured by an RF substitution method. Each of the five pads in the output step attenuator is measured at 520 MHz. The second 30 dB pad and the 40 dB pad are measured in combination with other pads. A reference output level is set with a power meter. A reference trace is obtained with a spectrum analyzer and a standard attenuator pad. The standard pad is removed and the output step attenuator position to be measured is substituted. The spectrum analyzer trace is returned to the reference level by resetting the Signal Generator output level. The resulting Signal Generator output level is measured and compared to the original power meter reference level. A 26 dB RF amplifier is required to boost signal levels below the -60 dBm level.

4.5.1 OUTPUT METER ACCURACY TEST

EQUIPMENT

Power Meter and Sensor

HP435A/8481A

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER FREQUENCY selector CAL

050.000 MHz

MODULATION MODE

CW

MODULATION FREQ MODULATION FM/AM

(Inactive in CW MODE) (Inactive in CW MODE)

OUTPUT VERNIER

Fully Clockwise

OUTPUT step attenuator

+10 dBm

Calibrate the power meter and power sensor. power meter to the +15 dBm range. Connect the power sensor to the Signal Generator RF out connector. (When reading the power meter, set the range switch so that the meter indicates between 0 and -5 dBm).

NOTE: The indicated output level of the Signal Generator is equal to the sum of the output meter reading and the step attenuator setting. The difference between the actual power meter reading and the indicated output level is the output meter error. For example, the indicated output level is +13 dBm for an output meter reading of +3 dBm and an OUTPUT step attenuator setting of +10 dBm. If the power meter reading is +13.15 dBm, the output meter error is +0.15 dB.

- 3. Adjust the Signal Generator OUTPUT VERNIER for a +3 dBm output meter reading. Observe the power meter reading and make a note of the output meter error to the nearest 0.05 dB (4 division). Continue to adjust the OUTPUT VERNIER for output meter reading increments of 1 dB between +3 and -7 dBm, and note the output meter error at each reading. As the test progresses make a note of the maximum output meter error to the nearest 0.05 dB. The allowable error is +0.5 dB. Record the maximum output meter error on line 9 of the PTR.
- 4. Set the Signal Generator OUTPUT step attenuator to 0 dBm and repeat step 3 above. Record the maximum output meter error on line 10 of the PTR.

4.5.2 FLATNESS TEST

EQUIPMENT

Power Meter and Sensor HP435A/8481A

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER

CAL

FREQUENCY selector

050.000 MHz

MODULATION MODE

CW

MODULATION FREQ MODULATION FM/AM OUTPUT VERNIER

(Inactive in CW MODE) (Inactive in CW MODE)

Fully Clockwise

OUTPUT step attenuator

+10 dBm

- 2. Set the power meter to the $+15~\mathrm{dBm}$ range. Connect the power sensor to the Signal Generator RF out connector.
- 3. Adjust the Signal Generator OUTPUT VERNIER for a +12 dBm power meter reading.
- 4. Set the Signal Generator FREQUENCY selector in 10 MHz steps between 10 and 520 MHz and observe the maximum change in the power meter readings from the +12 dBm reading in step 3. The maximum allowable change is ± 0.75 dB. Record the maximum change to the nearest 0.05 dB ($\frac{1}{4}$ division) on line 11 of the PTR.
- 5. Set the Signal Generator FREQUENCY selector to $050.000\,\mathrm{MHz}$ and adjust the OUTPUT VERNIER for a +3 dBm power meter reading.
- 6. Repeat step 4 above except observe the maximum change in the power meter readings from the +3 dBm reading in step 5. Record the maximum change from the +3 dBm reading to the nearest 0.05 dB on line 12 of the PTR.
- 7. Set the Signal Generator FREQUENCY selector to 050.000 MHz and the OUTPUT step attenuator to 0 dBm. Adjust the OUTPUT VERNIER for a -7 dBm power meter reading.
- 8. Repeat step 4 above except observe the maximum change in the power meter readings from the -7 dBm reading in step 7. Record the maximum change from the -7 dBm reading to the nearest 0.05 dB on line 13 of the PTR.

4.5.3 STEP ATTENUATOR ACCURACY TEST

EQUIPMENT

Power Meter HP435A/8481A and Sensor

Spectrum Analyzer HP8554L/8552B/141T

10 dB Attenuator Weinschel 50-10 Pad

20 dB Attenuator Weinschel 50-20 Pad

30 dB Attenuator Weinschel 50-30 Pad

40 dB Attenuator Weinschel 50-40 Pad

Wideband Amplifier HP8447D 26 dB Gain

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER CAL
FREQUENCY selector 520.000 MHz
MODIF ATION MODE

MODULATION MODE AM
MODULATION FREQ DC
MODULATION FM/AM 0% AM

OUTPUT VERNIER Fully Clockwise

OUTPUT step attenuator 0 dBm

2. Set the power meter to the $+10~\mathrm{dBm}$ range. Connect the power sensor to the Signal Generator RF out connector.

3. Adjust the MODULATION FM/AM control of the Signal Generator for a +7 dBm power meter reading.

NOTE: Increasing the MODULATION FM/AM control setting in the preceeding step causes the output meter needle to read off scale. This is normal.

- 4. Disconnect the power sensor from the Signal Generator RF out connector. Connect a standard 10 dB attenuator pad to the RF out connector. Connect the output of the attenuator pad to the spectrum analyzer as shown in Figure 4-1.
- 5. Set the spectrum analyzer to 520 MHz, the bandwidth to 10 kHz, the frequency span per division to 2 kHz, and the tuning stabilizer switch on. Set the video filter to 100 Hz and the vertical display to 2 dB per division.

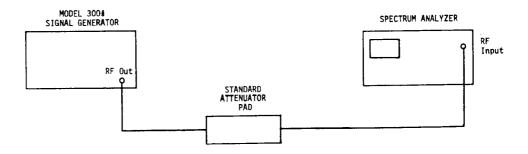


Figure 4-1. Step Attenuator Accuracy Setup

- 6. Use the log reference controls to obtain a peak trace one division below the log reference line of the spectrum analyzer display. Center the trace in the display with fine tuning.
- 7. Set the OUTPUT step attenuator of the Signal Generator to $-10~\mathrm{dBm}$.

- 8. Disconnect the $10~\mathrm{dB}$ attenuator pad from the setup and reconnect the spectrum analyzer to the RF out connector of the Signal Generator.
- 9. Adjust the MODULATION FM/AM control of the Signal Generator to realign the peak of the trace one division below the log reference line as in step 6.
- 10. Disconnect the cable to the Signal Generator RF out connector. Connect the power sensor to the Signal Generator RF out connector. Set the OUTPUT step attenuator to 0 dBm.
- 11. Observe the difference between the actual power meter reading and the +7 dBm reference setting in step 3. The difference or error should be ± 0.7 dB maximum. Record the error on line 14 of the PTR.
- 12. Repeat steps 3 through 11 using the standard attenuator pads and the Signal Generator OUTPUT step attenuator settings indicated in the following table.

Steps 4 and 8 Attenuator pad	Step 7 OUTPUT Step Attenuator	Step 11 Record Error on
dB	dBm setting	Line of PTR
10	-10	14
20	-20	15
30	-30	16
60	-60	17
90	- 90	18

NOTE: To test the OUTPUT step attenuator below -60 dBm an RF amplifier (>20 dB gain) is required. Insert the 26 dB wideband amplifier between the standard attenuator pad and the spectrum analyzer (Figure 4-1). The allowable error for the -90 dBm setting (step 11) is ± 1.5 dB. The OUTPUT step attenuator can be tested down to the -130 dBm position if a 40 dB RF amplifier is used and if precautions are taken to properly shield the RF output from the Signal Generator.

4.6 HARMONICS TEST

SPECIFICATION

Harmonics Outputs

>30 dB below fundamental from 10 to 520 MHz >20 dB below fundamental from 1 to 10 MHz

METHOD

A spectrum analyzer is used to measure harmonics in the frequency range of the Signal Generator at +13 and +3 dBm output levels.

EQUIPMENT

Spectrum Analyzer HP8554L/8552B/141T

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER CAL

FREQUENCY selector 001.000 MHz

MODULATION MODE CW

MODULATION FREQ (Inactive)
MODULATION FM/AM (Inactive)
OUTPUT VERNIER Fully Clockwise

OUTPUT step attenuator +10 dBm

- 2. Connect the Signal Generator $\,$ RF out connector $\,$ to the RF input of the spectrum analyzer.
- 3. Set the spectrum analyzer to measure the harmonic distortion of the Signal Generator for fundamental frequencies between 1 and 10 MHz. Set the bandwidth to 100 kHz, the frequency span per division to 5 MHz, and the display to 10 dB/div. Locate the zero reference at the left edge of the graticule, and adjust the fundamental amplitude to the log reference line (0 dB) in the display.
- 4. Increase the setting of the Signal Generator FREQUENCY selector in 1 MHz steps between 1 and 10 MHz while observing the spectrum analyzer display. The harmonics should be >20 dB below the fundamental. Record the maximum harmonic observed in the display in dB below the fundamental on line 19 of the PTR.
- 5. Set the Signal Generator OUTPUT step attenuator to 0 dBm, and repeat steps 3 and 4 at the +3 dBm output level. Record the maximum harmonic observed in dB below the fundamental on line 20 of the PTR.
- 6. Set the Signal Generator FREQUENCY selector to $10~\mathrm{MHz}$ and the OUTPUT step attenuator to $+10~\mathrm{dBm}$.
- 7. Set the spectrum analyzer to measure harmonic distortion of the Signal Generator for fundamental frequencies between 10 and 520 MHz. Set the bandwidth to 300 kHz and the frequency span per division to 100 MHz.
- 8. Increase the setting of the Signal Generator FREQUENCY selector in 10 MHz steps between 10 and 520 MHz while observing the spectrum analyzer display. The harmonics should be >30 dB below the fundamental. Record the maximum harmonic observed in the display in dB below the fundamental on line 21 of the PTR.

PERFORMANCE TESTS

9. Set the Signal Generator OUTPUT step attenuator to $0\,\mathrm{dBm}$ and repeat steps 7 and 8 at the +3 dBm output level. Record the maximum harmonic observed in dB below the fundamental on line 22 of the PTR.

4.7 NON-HARMONICS TEST

SPECIFICATION

Fundamental Range (MHz)	Non-harmonic Range (MHz)	Non-harmonic level dB below fundamental
1 to 3 3 to 250 3 to 350 3 to 520	1 to 3 3 to 250 3 to 350 3 to 1000	>60 >65 >55 >35

METHOD

A spectrum analyzer is used to measure the level of non-harmonics in the 1 to 520 MHz range at \pm 13 dBm, the maximum specified output level of the Signal Generator.

EQUIPMENT

HP8554L/8552B/141T

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER	CAL
FREQUENCY selector	001.000 MHz
MODULATION MODE	CW
MODULATION FREQ	(Inactive)
MODULATION FM/AM	(Inactive)
OUTPUT VERNIER	Fully Clockwise
OUTPUT step attenuator	+10 dBm

- 2. Connect the Signal Generator $\ensuremath{\mathsf{RF}}$ out connector to the $\ensuremath{\mathsf{RF}}$ input of the spectrum analyzer.
- 3. Set the spectrum analyzer to measure the non-harmonic content of the Signal Generator output between 1 and 3 MHz. Set the bandwidth to 30 kHz, the frequency span per division to 1 MHz and the display to $10~\mathrm{dB/div.}$ Locate the zero reference at the left edge of the graticule, and adjust the fundamental to the log reference line (0 dB) in the display.
- 4. Increase the setting of the Signal Generator FREQUENCY selector in 1 MHz steps between 1 and 3 MHz. The non-harmonics between 1 and 3 MHz should be 60 dB below the fundamental. Record the maximum non-harmonic observed in the display between 1 and 3 MHz in dB below the fundamental on line 23 of the PTR.
- 5. Set the spectrum analyzer to measure the non-harmonic content of the Signal Generator output between 3 and 250 MHz. Set the bandwidth to 300 kHz and the frequency span per division to 100 MHz.

4-13

6. Increase the setting of the Signal Generator FREQUENCY selector in 1 MHz steps between 3 and 10 MHz and in 10 MHz steps between 10 and 520 MHz while observing the spectrum analyzer display. Use the table below to determine the maximum non-harmonic level in each of the frequency ranges shown. Record the maximum non-harmonic level observed in each range indicated in the table on the applicable line of the PTR.

Frequency Range of Fundamental (MHz)	Non-harmonic Frequency Range (MHz)	Non-harmonic Level (dB be- low fundamental)	Record Max Non-harmonic (Line number in PTR)
3–250	3-250	>65	24
3–350	3-350	>55	25
3–520	3-1000	>35	26

4.8 RESIDUAL AM TEST

SPECIFICATION

>55 dB below carrier in a 50 Hz to 15 kHz post-detection bandwidth.

METHOD

A modulation meter operating in AM mode is used to demodulate the Signal Generator output at the minimum leveler point where AM noise is maximum. A distortion analyzer (operating in level mode) is used to increase the resolution of the demodulated output of the modulation meter. The system is calibrated at a 10% AM level. The 10% AM is removed and the residual AM is read in dB below the calibrated 10% AM level. 20 dB is added to the reading to relate the residual AM to the carrier.

EQUIPMENT

Modulation Meter

Radiometer AFM2

Distortion Analyzer HP334A

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER CAL
FREQUENCY selector 500.000 MHz
MODULATION MODE AM
MODULATION FREQ 1 kHz
MODULATION FM/AM 0% AM
OUTPUT VERNIER -7 dBm reading on output meter

OUTPUT step attenuator

2. Connect the equipment as shown in Figure 4-2.

0 dBm

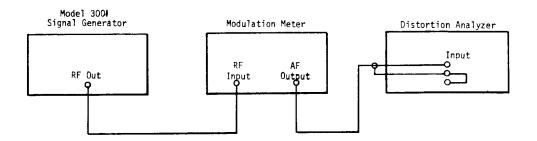


Figure 4-2. Residual AM Setup

- 3. Set the modulation meter to read %AM at 500 MHz. Set the RF input attenuation to 10 dB, the IF bandwidth to ± 400 kHz, the meter response to fast, the function switch to ± 400 the meter range switch to 10 and the filter bandwidth to 50 Hz-15 kHz.
- 4. Adjust the Signal Generator MODULATION FM/AM control for a modulation meter reading of 10% AM. NOTE: 10% AM is obtained at a full-scale reading of 100 with the modulation meter range switch set to 10.
- 5. With the distortion analyzer operating in level mode, calibrate it for a 0 dB panel-meter reading. The system is now calibrated at a reference level 20 dB below the carrier. Since the modulating signal and carrier amplitudes are equal at 100% AM, it follows that at 10% AM the modulating signal is 20 dB below the carrier.
- 6. Set the Signal Generator MODULATION FM/AM control to 0% AM.
- 7. Without disturbing the Signal Generator and modulation meter controls, set the distortion analyzer to read residual AM. Set the range switch so that the panel meter reads between 0 and -10 dB. First, read the residual AM below the 0 dB reference level in step 5. Then add 20 dB to the above reading to obtain the residual AM below the carrier. (For example, a 38 dB residual AM below the 0 dB reference +20 dB = 58 dB residual AM below the carrier.) The residual AM should be >55 dB below the carrier. Record the residual AM in dB below the carrier on line 27 of the PTR.

As many other carrier frequencies may be tested as desired.

4.9 RESIDUAL FM TEST

SPECIFICATION

<200 Hz in a 50 Hz to 15 kHz post-detection bandwidth

METHOD

A modulation meter which is set to read frequency deviation is used to measure residual FM. The test is performed at maximum frequency and output level. The Signal Generator is operated in an FM mode where the residual FM is greatest.

The residual FM is measured in an environment where the noise level <60 dB relative to $2 \mathrm{x} 10^{-4}~\mu bar$.

EQUIPMENT

Modulation Meter Radiometer AFM2

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER CAL
FREQUENCY selector 520.000 MHz
MODULATION MODE FMx10
MODULATION FREQ EXT
MODULATION FM/AM 0 kHz
OUTPUT VERNIER Fully Clockwise

OUTPUT step attenuator +10 dBm

- 2. Connect the Signal Generator RF out connector to the 50 ohm RF input of the modulation meter.
- 3. Set the modulation meter to read FM deviation at 520 MHz. Set the meter range switch to 3, the RF input attenuation to 20 dB, the IF bandwidth to ± 400 kHz, the meter response to fast and the filter bandwidth to 50 Hz-15 kHz.
- 4. Measure the average level of the FM deviation on the modulation meter and disregard occasional peaks. The residual FM should be $<250~\rm{Hz}$. Read the residual FM on the panel meter with the function switch set to +FM and then -FM positions. Record the greater of the two readings in Hz on line 28 of the PTR.

As many other frequencies may be tested as desired.

4.10 INTERNAL MODULATION FREQUENCY TEST

SPECIFICATION

Amplitude & Frequency Modulation

Internal

400 Hz and 1 kHz $\pm 5\%$

METHOD

A frequency counter is used to measure modulation frequency at the rear-panel modulation test point of the Signal Generator. Since the internal 400 Hz and 1 kHz oscillators are used for both the AM and FM modes, this test will suffice for both modes.

EQUIPMENT

Frequency Counter HP5300B/5303B

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER N/A (not applicable to this test)
FREQUENCY selector N/A
MODULATION MODE N/A
MODULATION FREQ 400 Hz
MODULATION FM/AM Mid-range

OUTPUT VERNIER N/A
OUTPUT step attenuator N/A

- 2. Connect the low frequency input of the frequency counter to the modulation test point (pin 36 of rear-panel jack J101) and the cable shield to ground (pin 25 of J101) of the Signal Generator. (See Figure 2-3 and Schematic 1).
- 3. The counter should read between 380 and 420 Hz. Record the counter reading on line 29 of the PTR.
- 4. Set the Signal Generator MODULATION FREQ control to 1 kHz.
- 5. The counter should read between 950 and 1050 Hz. Record the counter reading on line 30 of the PTR.

4.11 PERCENT AM ACCURACY TEST

SPECIFICATION

ACCURACY

+(5% of reading +5%) at a frequency of 1 kHz

This specification applies for output limits $\leq +3$ dBm. AM is possible above +3 dBm if the peak of the modulated output does not exceed +13 dBm.

METHOD

The %AM accuracy is measured with a modulation meter after the front-panel MODULATION FM/AM control error, which is $\pm 4\%$, is subtracted out. The FM/AM control accuracy, which consists of the control linearity and the modulation scale errors, is measured in terms of the DC voltage at the rear-panel modulation test point. The calibration of the voltage across the control at maximum position is checked initially.

The remaining %AM accuracy, which is $\pm (5\%)$ of the reading + 1% of full scale), is measured by the modulation meter with accurately measured voltage applied to the Signal Generator modulation system. The measurement uncertainty is 2% of the reading $\pm 1\%$ of full scale.

EQUIPMENT

Modulation Meter

Radiometer AFM2

Digital Multimeter Dana 4300

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER	CAL
FREQUENCY selector	520.000 MHz
MODULATION MODE	CW
MODULATION FREQ	DC
MODULATION FM/AM	0% AM
OUTPUT VERNIER	-3 dBm reading on output meter
OUTPUT step attenuator	O dBm

2. Connect the equipment as shown in Figure 4-3. the center conductor of the cable between the high terminal of the digital multimeter and the modulation test point (pin 36 of rear-panel jack J101). Connect the cable shield between the low terminal of the digital multimeter and the Signal Generator ground (pin 25 of J101).

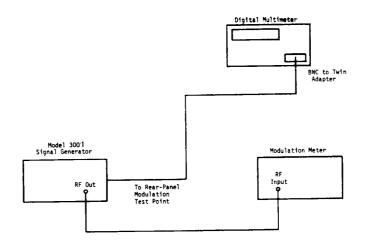


Figure 4-3. Percent AM Accuracy Setup

- 3. Adjust the Signal Generator MODULATION FM/AM control to its maximum up position.
- The digital multimeter should read 5.000 ± 0.020 volts If the voltage is within limits, continue to step 5. If out of limits, the voltage should be recalibrated (par. 5.3.9).
- 5. Adjust the Signal Generator MODULATION FM/AM control to 30% AM.
- 6. The digital multimeter should read between 1.300 and 1.700 volts DC. Record the reading on line 31 of the PTR.

- 7. Set the Signal Generator MODULATION FM/AM control to 90% AM.
- 8. The digital multimeter should read between 4.300 and 4.700 volts DC. Record the reading on line 32 of the PTR.
- 9. Adjust the Signal Generator MODULATION FM/AM control to 0% AM.

NOTE: This concludes the MODULATION FM/AM control accuracy test. As many other points may be tested as desired.

- 10. Set the modulation meter to read %AM at 520 MHz. Set the meter range switch to 100, the RF input attenuation to 10 dB, the IF bandwidth to ± 400 Hz, the meter response to fast, the function switch to ± 400 Hz, the filter bandwidth to 50 Hz-15 kHz.
- 11. Adjust the Signal Generator MODULATION FM/AM control for a reading of 1.500 ± 0.003 volts DC on the digital multimeter. Set the MODULATION FREQ switch to 1 kHz and the MODULATION MODE switch to AM.
- 12. Make a note of the modulation meter reading in %AM. Set the modulation meter function switch to -AM, and note the modulation meter %AM reading as before. Compute the average of the two readings. The average %AM should be between 27.5 and 32.5%. Record the average %AM to the nearest 0.5% on line 33 of the PTR.
- 13. Set the Signal Generator MODULATION MODE switch to CW and the MODULATION FREQ switch to DC.
- 14. Adjust the Signal Generator MODULATION FM/AM control for a reading of 4.500 ± 0.003 volts DC on the digital multimeter. Set the MODULATION FREQ switch to 1 kHz and the MODULATION MODE switch to AM.
- 15. Make a note of the modulation meter reading in %AM. Set the modulation function switch to +AM and note the modulation meter %AM reading as before. Compute the average of the two readings. The average %AM should be between 84.5 and 95.5% AM. Record the average %AM to the nearest 0.5% on line 34 of the PTR.

NOTE: This concludes the modulation system accuracy test. As many other points may be tested as desired.

4.12 AM BANDWIDTH TEST

SPECIFICATION

Modulation Freq. External

DC to 20 kHz (3 dB bandwidth), input level required = 10 volts pp into 600 ohms to provide calibrated % modulation control.

METHOD

The measurement is made with a modulation meter operating in AM mode and a function generator. The function generator supplies an external sine wave to amplitude modulate the Signal Generator. The system is calibrated at $-6~\mathrm{dB}$ on the modulation meter dB scale (approximately 50% AM). The external modulation frequency is increased from 1 kHz to 20 kHz and the AM bandwidth is measured as the change in dB level from the calibration level.

EQUIPMENT

Modulation Meter Radiometer A Function Generator Wavetek 130 Oscilloscope Tektronix D

Radiometer AFM2 Wavetek 130 Tektronix D10/5A18N/5B10N

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER CAL
FREQUENCY selector 050.000 MHz

MODULATION MODE AM
MODULATION FREQ EXT
MODULATION FM/AM 0% AM
OUTPUT VERNIER +3 dBm reading on output meter
OUTPUT step attenuator 0 dBm

2. Connect the equipment as shown in Figure 4-4.

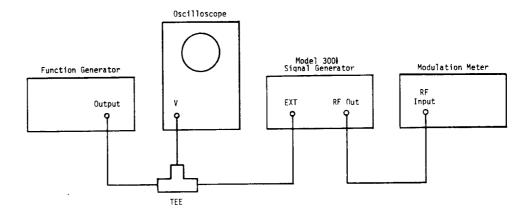


Figure 4-4. AM Bandwidth Setup

3. Set the modulation meter to read %AM at 50 MHz. Set the RF input attenuation to 20 dB, the IF bandwidth to ± 400 kHz, the meter response to fast, the function switch to ± 400 the meter range switch to 100 and the filter bandwidth to 75 kHz.

- 4. Set the function generator for a 1 kHz sine wave output and the attenuator controls for a 10 volt pp sine wave on the oscilloscope.
- 5. Adjust the Signal Generator MODULATION FM/AM control for a modulation meter reading of $-6~\mathrm{dB}$ (approximately 50% AM).
- 6. Maintain the 10 volt pp output level and increase the function generator frequency from 1 to 20 kHz. Observe the modulation meter scale. It should read between -6 and -9 dB. Note the change in dB from the -6 dB calibration level.
- 7. Repeat steps 4 through 6 with the modulation meter function switch set to -AM. Note the change in dB from the -6 dB setting as in step 6.
- 8. Record the larger of the two dB changes obtained in steps 6 and 7 on line 35 of the PTR.

4.13 AM DISTORTION TEST

SPECIFICATION

Distortion

3% distortion to 70% AM (5% to 90% AM) at a frequency of 1 kHz.

This specification applies for output limits $\leq +3$ dBm. AM is possible above +3 dBm if the peak of the modulated output does not exceed +13 dBm.

METHOD

The measurement is made with a modulation meter and a distortion analyzer, which measures the distortion of the demodulated AM from the modulation meter. The measurement is made at the minimum leveler point where the AM distortion is normally worst-case.

EQUIPMENT

Modulation Meter Radiometer AFM2 Distortion Analyzer HP334A

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER CAL
FREQUENCY selector 520.000 MHz
MODULATION MODE AM
MODULATION FREQ 1 kHz
MODULATION FM/AM 0% AM

OUTPUT VERNIER -7 dBm reading on output meter

OUTPUT step attenuator 0 dBm

2. Connect the equipment as shown in Figure 4-5.

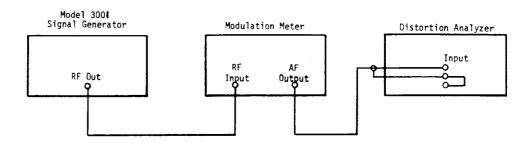


Figure 4-5. AM Distortion Setup

- 3. Set the modulation meter to read %AM at 520 MHz. Set the RF input attenuation to 10 dB, the IF bandwidth to ± 400 kHz, the meter response to fast, the function switch to ± 400 kHz, the meter range switch to 100 and the filter bandwidth to 50 Hz to 15 kHz.
- 4. Adjust the Signal Generator MODULATION FM/AM control for a modulation meter reading of 70% AM. Set the modulation meter function switch to -AM, and observe the modulation meter reading. Readjust the MODULATION FM/AM control until the average of the two modulation meter readings in +AM and -AM positions of the modulation meter function switch is equal to 70% AM.
- 5. Calibrate the distortion analyzer and measure the distortion. The distortion should be less than 3%. Record the distortion on line 36 of the PTR.
- 6. Adjust the Signal Generator MODULATION FM/AM control as in step 4 until the average of the modulation meter readings in +AM and -AM positions of the modulation function switch is equal to 90% AM.
- 7. Calibrate the distortion analyzer and measure the distortion. The distortion should be less than 5%. Record the distortion on line 37 of the PTR.

4.14 FM DEVIATION ACCURACY TEST

SPECIFICATION

Deviation Accuracy ± 500 Hz on FMx1 range ± 5 kHz on FMx10 range

METHOD

The deviation is measured in both FM modes using an internal DC voltage equal to the peak of the internal sine wave voltages. A frequency counter is used to measure the maximum deviation in both FM modes.

EQUIPMENT

Frequency Counter

HP5300B/5303B

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER 0 kHz
FREQUENCY selector 050.000 MHz
MODULATION MODE FMx1
MODULATION FREQ DC
MODULATION FM/AM 5 kHz on FM scale
OUTPUT VERNIER Fully Clockwise

OUTPUT step attenuator +10 dBm

- 2. Connect the 50 ohm input of the frequency counter to the Signal Generator RF out connector.
- 3. Read the frequency counter and record the reading to 8 places on line 38 of the PTR.
- 4. Adjust the Signal Generator MODULATION FM/AM control to 0 kHz deviation on the FM scale.
- 5. Read the frequency counter and record the reading to 8 places on line 39 of the PTR.
- 6. Subtract the reading obtained in step 5 from the reading obtained in step 3. The difference between the two readings should be between 9.500 and 10.500 kHz. Record the difference in kHz on line 40 of the PTR.
- 7. Set the Signal Generator MODULATION MODE to FMx10 and adjust the MODULATION FM/AM control to 10 kHz deviation on the FM scale.
- 8. Read the frequency counter and record the reading to 6 places on line 41 of the PTR.
- 9. Adjust the Signal Generator MODULATION FM/AM control to 0 kHz deviation on the FM scale.
- 10. Read the frequency counter and record the reading to 6 places on line 42 of the PTR.
- 11. Subtract the reading obtained in step 10 from the reading obtained in step 8. The difference between the two readings should be between 95.0 and 105.0 kHz. Record the difference in kHz on line 43 of the PTR.

4.15 FM BANDWIDTH TEST

SPECIFICATION

External, 50 Hz to 25 kHz, (1 dB bandwidth), input level required = 10 volts pp into 600 ohms to provide calibrated deviation control.

(DC to 25 kHz when frequency VERNIER is not in CAL position.)

METHOD

The measurement is made with a modulation meter and a function generator. The function generator supplies an external sine wave to frequency modulate the Signal Generator. system is calibrated with a 1 kHz external sine wave at an indicated deviation 1 dB below the $\ 0 \ dB$ reference on the modulation meter dB scale (approximately 90 kHz deviation). The external modulation frequency is varied from 1 kHz to 50 Hz, and from 1 kHz to 25 kHz, and the FM bandwidth is measured as the change in dB level from the calibrated level.

EQUIPMENT

Modulation Meter Function Generator Wavetek 130 Oscilloscope

Radiometer AFM2

Tektronix D10/5A18N/5B10N

PROCEDURE

1. Set the Signal Generator controls as follows:

CAL Frequency VERNIER 520.000 MHz FREQUENCY selector FMx10 MODULATION MODE EXT MODULATION FREQ 0 kHz MODULATION FM/AM +3 dBm reading on output meter OUTPUT VERNIER +10 dBm OUTPUT step attenuator

Connect the equipment as shown in Figure 4-6.

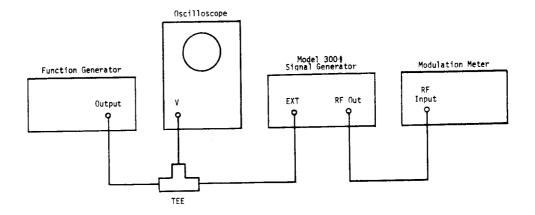


Figure 4-6. FM Bandwidth Setup

- 3. Set the modulation meter to read FM deviation at 520 MHz. Set the RF input attenuation to 20 dB, the IF bandwidth to ± 400 kHz, the meter response to fast, the function switch to ± 500 kHz.
- 4. Set the function generator for a 1 kHz sine wave output and the attenuator controls for a 10 volt pp sine wave on the oscilloscope.
- 5. Adjust the Signal Generator MODULATION FM/AM control for a modulation meter reading of $-1~\mathrm{dB}$ (approximately 90 kHz deviation).
- 6. Maintain the 10 volt pp external input level during this step. Slowly decrease the function generator frequency from 1 kHz to 50 Hz, and then slowly increase the frequency to 25 kHz while observing the dB scale on the modulation meter. It should read between 0 and -2 dB. Note the maximum change from the -1 dB reference (step 5) to the nearest 0.25 dB.
- 7. Repeat steps 4 through 6 with the modulation meter function switch set to -FM. Note the change from -1 dB reference as in step 6. Record the larger of the two changes in dB (in this step and in step 6) on line 44 of the PTR.

4.16 FM DISTORTION TEST

SPECIFICATION

Distortion

4% (3 to 100 kHz deviation) at a frequency of 1 kHz

METHOD

The measurement is made with a modulation meter and a distortion analyzer, which measures the distortion of the demodulated FM from the modulation meter. Distortion below 3 kHz deviation increases because of residual FM noise. The distortion at 3 kHz deviation is measured in an environment where the noise level <60 dB relative to 2×10^{-4} µbar.

EQUIPMENT

Modulation Meter Radiometer AFM2
Distortion Analyzer HP334A

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER

FREQUENCY selector

MODULATION MODE

MODULATION FREQ

MODULATION FREQ

MODULATION FM/AM

OUTPUT VERNIER

Fully Clockwise

OUTPUT step attenuator +10 dBm

2. Connect the equipment as shown in Figure 4-7.

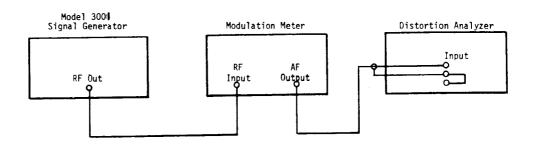


Figure 4-7. FM Distortion Setup

- 3. Set the modulation meter to read FM deviation at 520 MHz. Set the RF input attenuation to 20 dB, the IF bandwidth to ±400 kHz, the meter response to fast, the function switch to +FM, the meter range switch to 3 and the filter bandwidth to 50 Hz-15 kHz. The modulation meter should read approximately 3 kHz.
- 4. Calibrate the distortion analyzer and measure distortion. The distortion should be less than 4%. Record the distortion on line 45 of the PTR.
- 5. Set the meter range switch of the modulation meter to 300. Set the Signal Generator MODULATION MODE to FM $\times 10$.
- 6. Adjust the Signal Generator MODULATION FM/AM for a reading of 300 kHz deviation on the modulation meter.
- 7. Calibrate the distortion analyzer and measure the distortion. The distortion should be less than 4%. Record the distortion on line 46 of the PTR.

4.17 IMPEDANCE TEST

SPECIFICATION

Impedance

50 ohm, VSWR 1.2 at RF output levels below 0.1 V.

METHOD

The measurement is made with a VSWR bridge and the return loss is displayed on a spectrum analyzer. An RF signal from a sweep/signal generator is fed to the input of the bridge. A reference level is established by shorting the bridge output port. The short is replaced by the RF impedance of the Signal Generator. The sweep/signal generator is tuned from 1 to 520 MHz and the return loss versus frequency is displayed.

EQUIPMENT

Spectrum Analyzer Sweep/Signal Generator

HP8554L/8552B/141T

VSWR Bridge Coaxial Short,

Wavetek 2001 Wiltron 60N50

Type N Male

HP11512A

PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER CAL FREQUENCY selector 520.000 MHz MODULATION MODE MODULATION FREQ (Inactive) MODULATION FM/AM (Inactive) OUTPUT VERNIER +3 dBm reading on output meter -10 dBm

OUTPUT step attenuator

- Use the setup in Figure 4-8. Connect the sweep/signal generator to the input port, the spectrum analyzer to the reflected output port and the coaxial short to the deviceunder-test port of the VSWR bridge.
- Set the sweep/signal generator output level to -10 dBm, the mode to CW and the center frequency to 250 MHz.
- 4. Set the spectrum analyzer to span 0 to 500 MHz and the bandwidth to 300 kHz. Use the log reference level controls to calibrate the 250 MHz signal at the top line (0 dB reference) of the display graticule.

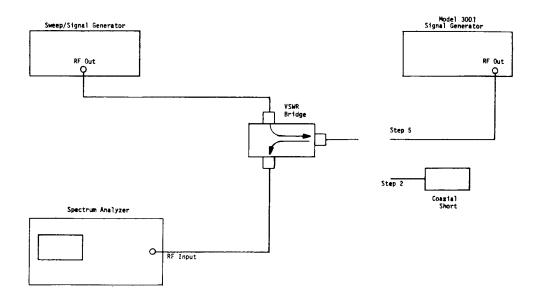


Figure 4-8. Test Setup

PERFORMANCE TESTS

5. Disconnect the coaxial short and connect the device-under-test port of the VSWR bridge to the Signal Generator RF out connector. Use the sweep/signal generator center frequency control to tune from 1 to 520 MHz and verify that the signal level in the display is >21 dB below the 0 dB reference. Disregard the signal at 520 MHz. Record the reading in dB below the reference on line 47 of the PTR.

4.18 RFI TEST

SPECIFICATION

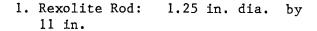
 $^{<}1.0~\mu V$ is induced in a two-turn, one-inch diameter loop which is held one inch away from any surface. Loop feeds a 50 ohm receiver.

METHOD

A 50 ohm receiver consisting of a 26 dB amplifier and a spectrum analyzer are calibrated at a 1 μV level using the Signal Generator. Aloop probe is then connected to the receiver and the leakage is measured at a one-inch distance from the external surfaces of the Signal Generator with the RF output terminated in 50 ohms. A screen room may be required for this measurement.

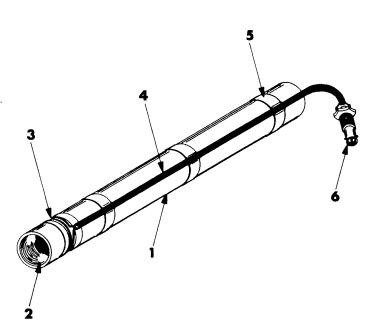
EQUIPMENT

Spectrum Analyzer HP8554L/8552B/141T Wideband Amplifier HP3447D 50 ohm Load HP11593A Loop Probe See Figure 4-9 Coaxial Termination HP908A (50 ohm)


PROCEDURE

1. Set the Signal Generator controls as follows:

Frequency VERNIER CAL
FREQUENCY selector 500.000 MHz
MODULATION MODE CW
MODULATION FREQ (Inactive)
MODULATION FM/AM (Inactive)
OUTPUT VERNIER Set to +3 dBm on output meter
OUTPUT step attenuator -110 dBm


- 2. Connect the equipment as shown in Figure 4-10.
- 3. Set the spectrum analyzer bandwidth to $100~\mathrm{kHz}$, the scan width to $0.5~\mathrm{MHz/div}$, the video filter to $100~\mathrm{Hz}$, the input attenuation to $0~\mathrm{dB}$ and the 10g reference level to $-50~\mathrm{dBm}$ with a $10~\mathrm{dB/div}$ vertical scale. Center the signal in the display using the center frequency control. Calibrate the analyzer for the $-107~\mathrm{dBm}$ signal at the $-31~\mathrm{dBm}$ graticule using the 10g reference controls.

- 4. Disconnect the RF amplifier from the Signal Generator, and connect the 50 ohm coaxial termination to the RF out connector of the Signal Generator. Tighten the termination to minimize RF leakage.
- 5. Set the Signal Generator OUTPUT step attenuator to -10 dBm, and the OUTPUT VERNIER to a +3 dBm reading on the output meter.
- 6. Connect the loop probe to the input of the RF amplifier. Move the loop probe over the surfaces of the Signal Generator with the two-turn loop at a one-inch distance. The signal plus noise should be less than the -107 dBm reference (step 2). Record the maximum reading in dBm on line 48 of the PTR.

- 2. Hole: 1.00 in dia. by 0.80 in. deep.
- 3. Groove: 0.120 in wide by 0.125 in deep 1.00 in from end of rod.
- 4. Coaxial Cable: (RG-174/U) 0.110" diameter by 19" long. Strip shield for 7 in, and cut off shield to ¼ in length. Strip insulation from center conductor ¼ in. Wind 2 turns of insulated center conductor in groove of rod. Solder shield to center conductor, and insulate the solder joint.
- 5. Wind mylar tape around the twoturn loop, and around the rod (three places).
- 6. BNC male connector.

Figure 4-9. Loop Probe

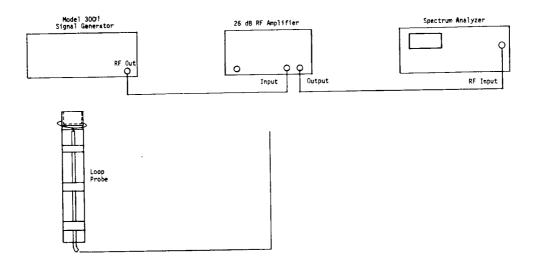


Figure 4-10. RF Leakage Setup

PERFORMANCE TEST RECORD MODEL 3001 SIGNAL GENERATOR

S/N _____ DATE _____

																		
		-		CONTROL	SETTINGS	(for Ref	ference On	1y)	TOOL BEAUTO					Ļ				
PAR	TEST	<u> </u>	QUENCY	ļ	MODUL AT		METER	+		TEST RESULTS					I			
-		MHz	VERN.	MODE	FREQ	FM/AM	dBm	dBm	MINIMUM		ME	ASU	REMEI	NT		MAXII	MUM	E
4.2	Freq Range	1-520	CAL	CW		 	+3	+10			() (neci	k	, -			1
1	Frequency	40	CAL	CW			4		39,999.59 kH	z	\sqcup	ļ.		L	kHz	40,000,4	LkHz	2
4.3	Accuracy	1	0 kHz	FMx1	VERN	5 kHz	+3	+10	999.99 kH	z -	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$			L	Hz	1,020.0	l kHz	3
		}	——	FMx10	1	J 3 X112	1 "	+10	1.089.99 kH	z -		<u>L</u>			Hz	1,110.0	i kHz	4
		2	+3 kHz	- du				1	2500 11-						Hz			5
		↓	-3 kHz	↓					2500 Hz					Hz	3500 Hz		6	
4.4	Frequency	520	CAL	CW	ļ	 	+3	+10							Hz	104	Hz	7
-	Stability	320	0 kHz	FMx1	VERN	5 kHz	'3	+10							Hz	500	Hz	8
4.5.1		50	CAL	CW			+3 to -7	+10		,					dB		_	9
-	Accuracy	 	 	 		 		0	-0.5 dl	<u>`</u>					₫B	+0.5	₫B	10
4.5.2	Flatness	10 500	İ	l		ļ	+2	+10	4	<u> </u>					dB			11
7.5.2	rathess	10-520	CAL	CW			-7	+10	-0.75 dE	' 					dB	+0.75	₫B	12
	 	 	 	 	+	 	-7	0	+	+					dB	ļ		13
İ					1	Set to		-10 -20	4	<u> </u>					dB	l		14
4.5.3	Step Attenuator	520	CAL	AM	VEDN	+7 dBm	off	<u> </u>	-{	-					dB			15
"""	Accuracy	320		\ \frac{1}{2}	VERN	Ref on power	Scale (+7)	-30	-0.7 dB	-					₫B	+0.7	dΒ	16
	1	1	İ	ŀ		meter	}	-60		+-					dB			17
	1				<u> </u>	 		-90 +10	-1.5 dB	+-					dB	+1.5	dB	18
	į	1-10		ļ	1				20 dB down	-					₫₿			19 20
4.6	Harmonics	10-520	CAL	CW			+3	+10		+					_dB_			_
	1	320				1		0	30 dB down	<u> </u>		-			dB			21 22
		1-3							60 dB down	†					. dB			-
İ	1	3-250		1			,		65 dB down	 					_aB			23
4.7	Non-Harmonics	3-350	CAL	CW			+3	+10	55 dB down	<u> </u>		_			dB dB			24 25
		3-520			1	ļ			35 dB down	†								26
4.8	Residual AM	500	CAL	AM-CW	1 kHz	10%	-7	0	55 dB down	1				_	dB			27
4.9	Residual FM	520	CAL	FMx10	EXT	Min	+3	+10				_			Hz	200	H ₂	28
4.10	Internal Modulation				400 Hz	Mid-			380 Hz						Hz		Hz	29
	Frequency				1 kHz	scale			950 Hz						Hz	1050		30
	FM/AM Control				VERN	30%			1.300 VDC						VDC	1,700		31
4.11	Accuracy					90%			4.300 VDC						VDC	4.700		32
4.11	AM System Accuracy	520	CAL	AM	1 kHz	1.5 V pk	-3	0	27.5 %						Y.	32.5		33
						4.5 V pk	-3	-	84.5 %						72	95.5	%	34
4.12	AM Bandwidth	50	CAL	AM	EXT	50%	+3	0							dB	3	dB	35
4.13	AM Distortion	520	CAL	AM	1 kHz	70%	-7	0							%	3	L	36
						90%				7-4	1 -		_	_	7	5	%	37
				FMx1		10 kHz				$\vdash \downarrow \downarrow$	+		\perp	\downarrow	kHz		ļ	38
	Ch.					0 kHz 	ŀ		0.500.4%	Ш	4		+	4	kHz			39
4.14	FM Deviation	50	0 kHz		DC	10 kHz	+3	+10	9.500 kHz	1	┰┤		+	L	kHz	10.500		40
	Accuracy				<i>.</i> .	O kHz	į			┝┼╂	++		-		kHz kHz			41
		1		FMx10	}			ł	95.0 kHz	$\vdash \vdash \vdash$	++		-		kHz		-	42
4.15	FM Bandwidth	520	CAL	FMx10	EXT	3.2 kHz	+3	+10	30.0 KHZ			[dB	105.0 k	114	44
				FMx1		JIL NIIL	+	.10							2B	1	ub	→
4.16	FM Distortion	520	CAL	FMx10	1 kHz	3 kHz	+3	+10							~ %	4		45
4.17	Impedance	520	CAL	CW			0	-10	21 dB down					_	dB		-	46 47
4.18	RFI	500	CAL	CW			+3	0	LI UD UUWII						-+		-+	48
															₫₿	-107	aBm	40

	,	

SECTION 5 MAINTENANCE

5.1 INTRODUCTION

This section provides information for disassembly, calibration, and trouble-shooting the Model 3001 Signal Generator.

Measurements and adjustments will be facilitated by placing instrument on its right side, as access is required to top and bottom of unit for adjustments and test points.

5.2 SERVICE INFORMATION

5.2.1 DISASSEMBLY INFORMATION

Refer to Figure 5-1. The side panels form part of the support for the top and bottom covers; therefore, these covers should be removed before removing either side panel. The covers and panels can be removed as indicated below.

NOTE

One side panel must remain on the instrument to secure front - panel assembly to chassis.

REMOVAL OF BOTTOM COVER - Remove two rear feet (A) and lift cover off with a slight rear movement. Reinstall cover by reversing the removal procedure.

REMOVAL OF TOP COVER-Remove the single screw (B) from top and lift off cover with a slight rear movement. Reinstall cover by reversing the removal procedure.

REMOVAL OF FRONT-TOP RAIL - The top rail may be removed to facilitate removal of the meter or modulation board assembly. The rail is removed by removing three screws (D) and lifting rail upward.

REMOVAL OF SIDE PANEL - Either side panel can be removed to provide better access by removing the six screws (E) holding side panel to the instrument.

CAUTION

To prevent possible damage to harness when reinstalling side panels, use only the original screws or equivalent. Longer screws in the bottom two holes can cause damage to wiring.



Figure 5-1. Dissassembly

5.2.2 MODULE SERVICING

REMOVAL OF MODULE - Modules may be removed by removing any cables attached to top of the module and removing hold-down screw (C) from bottom. Rock module slightly while lifting upward to free module from chassis socket.

MAINTENANCE

REINSTALLING MODULE - Before installing the module, check that module pins are straight and properly aligned; then, carefully seat module pins into the chassis socket, replace module hold-down screw (C) to insure a good ground connection between module and chassis, and replace any cables attached to top of module. Module - cable connections are shown in Figure 5-6.

NOTE

If a module is replaced with a new module, it will be necessary to calibrate the phase-locked loop or other circuits involved. See Calibration Procedure in this section, Table 5-4.

MODULE-PIN NUMBERING SYSTEM - The module pins are numbered as shown in Figure 5-2. The off-center index stud prevents the module's being plugged in backward and also provides a method for locating pin #1.

NOTE

All 16 pins are not required in each module; only the pins actually used are installed, but the numbering system remains the same.

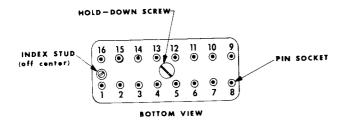


Figure 5-2. Module pin Numbering System

5.2.3 PRINTED-CIRCUIT BOARD SERVICING

PRINTED-CIRCUIT BOARD CONNECTORS - When reinstalling a cable connector on a printed-circuit board, be sure connector is properly aligned with the board connector pins and that connector faces proper direction (See Figure 5-3).

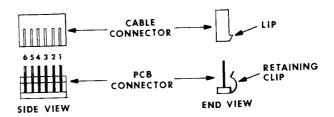


Figure 5-3. Connector Alignment

METER-BOARD (C315) REMOVAL - Removal of the meter-board assembly requires that the attenuator dial, VERNIER knob and potentiometer retaining nut and front The meter board top rail be removed. is secured to front panel by three screws - one through front panel (behind attenuator dial) and one at each top Remove these corner of meter board. three screws and disengage six-pin connector from meter board. Remove three slip-on wire connectors from attenuator The meter-board assembly can switch. then be moved toward rear until the VERNIER potentiometer shaft, UNLEVELED LED and meter case clear the front panel, then the board can be lifted from instrument.

The meter board is reinstalled by reversing the removal procedure. When installing the meter board, use care not to damage the UNLEVELED Lamp.

MODULATION BOARD (C316-2) Removal - The modulation-board assembly can be removed by the following procedure: Disengage slip-on connectors from the six BCD FREQUENCY switches; disengage twelvepin connector from modulation board; unsolder wire from EXT modulation connector and remove retaining nut from backside of this BNC connector; remove black spring - loaded knobs from MODULATION MODE and FREQ switches; remove knob from FREQUENCY VERNIER pot shaft; move front-top rail; then remove one screw from top-left corner of modulation board and one screw from top-left corner of C315 meter board. The modulationboard assembly can now be angled until switch levers clear the front panel. The assembly then can be lifted from instrument.

Model 3001 MAINTENANCE

The board assembly is reinstalled by reversing the removal procedure.

NOTE

When placing connectors on FREQUENCY switches, be sure each connector is on correct switch; switch cables break out of main harness in same order that switches appear.

POWER-SUPPLY CARD (C352) REMOVAL - The power-supply card can be removed by removing four screws which secure the printed-circuit card standoffs to rear panel. The card can then be angled to allow it to clear modules, cables and side rail, and thus be lifted from instrument. The printed-circuit card can be raised far enough to permit many com-

ponents to be checked without removing the three connecting cables. Disengaging the three cable connectors allows the power-supply card to be completely removed from the instrument. The power-supply card is reinstalled by reversing the removal procedure.

CAUTION

When reinstalling C352 card, use care NOT to pinch cables connected to rear-panel-mounted transistors.

5.2.4 RECOMMENDED TEST EQUIPMENT

The following test equipment, shown in Table 5-1, is recommended for servicing, troubleshooting and calibrating the Wavetek Model 3001.

TABLE 5-1. RECOMMENDED TEST EQUIPMENT

INSTRUMENT	CRITICAL REQUIREMENT	RECOMMENDED
Digital Voltmeter	.04% Accuracy	Dana Model 4200
Oscilloscope	DC and AC coupled At least 50 mV/cm sensitivity High frequency - at least 10 MHz	Tektronix 5400
Power Meter	10-520 MHz Frequency Range -10 dBm to +15 dBm Power Range	HP Model 435A with Model 8481A Power Sensor
Frequency Counter		HP Model 5303B
Spectrum Analyzer		HP Model 8558B

Mode1 3001

MAINTENANCE

5.3 CALIBRATION PROCEDURE

Remove instrument top cover, bottom cover, left-side panel and M2M module cover. The M2M module can be located by reference to Figure 5-6; then remove screw from top of module and slide cover off. Allow a two-hour warmup period before calibrating.

In general, calibration should be performed in the sequence given. Refer to Figures 5-4, 5-5 and 5-6 for test point and adjustment locations.

NOTE

All measurements are made with reference to chassis ground.

5.3.1 +18 VOLT ADJUSTMENT

Connect digital voltmeter to orange +18 volt line on pin 3 of module M30-1; set +18 V ADJ. on power supply to produce +18.00 V. (See Figures 5-5 and 5-6).

5.3.2 -18 VOLT CHECK

Connect digital voltmeter to yellow -18 volt line on pin 4 of module M30-1. The reading must be -18 V ± 40 mV.

5.3.3 +7.3 VOLT CHECK

Connect digital voltmeter to green +7.3 volt line on pin 2 of module M30-1. The reading must be +7.3 V ± 150 mV.

5.3.4 CRYSTAL - FREQUENCY ADJUSTMENT MODULE M30-1

Connect frequency counter having 50-ohm input to the Model 3001 RF OUT connector. Set the signal generator FREQUENCY switches to a high frequency which is within the counter's range, such as 500.000 MHz. Set front-panel controls as follows:

MODE CW
FREQ EXT
MODULATION FM/AM minimum
OUTPUT Dial +10 dBm
OUTPUT VERNIER Fully clockwise
FREQ VERNIER CAL

Adjust M30-1 Frequency Adjust trimmer (Figure 5-5) for minimum-frequency indication on counter; then, carefully turn Frequency Adjust trimmer clockwise until counter indicates the frequency selected by FREQUENCY switches. Disconnect counter from RF OUT connector. A final frequency check will be covered in paragraph 5.3.11.

5.3.5 PHASE-LOCKED LOOP #1 ADJUSTMENT

See Figure 5-6 for location of M31 test point and adjustments. Set FREQUENCY switches to 200.000 MHz; other frontpanel controls may be left as set in Section 5.3.4. Connect scope vertical input (DC, 1 V/cm) to M31 test point (D), and adjust scope horizontal controls for a smooth, continuous trace. Adjust M31 control (A) for a +1.0 V scope indication. Set frequency to 200.999 MHz and adjust M31 control (B) for a scope indication of +1.0 V.

5.3.6 PHASE-LOCKED LOOP #2 ADJUSTMENT M32

See Figure 5-5 for location of M32 test points and Figure 5-6 for adjustment controls. Set FREQUENCY to 200.000 MHz and other front-panel controls as in Section 5.3.4. Connect digital voltmeter to M32 pin 14, and carefully adjust both M30-1 trimmers (A and B) to produce a minimum reading on voltmeter. This voltage should be between +0.5 V and +3.0 VDC. Set FREQUENCY to 239.000 MHz and note that voltmeter reading is still within above limits.

Set FREQUENCY to 200.000 MHz and connect scope vertical input (DC, 1 V/cm) to M32 pin 15. Adjust M32 control (A) for a 0 V scope indication. Set FREQUENCY to 239.000 MHz, and adjust M32 control (B) to again produce a 0 V scope indication.

5.3.7 PHASE-LOCKED LOOP #3 ADJUSTMENT

P.L.L. #3 consists of two modules: The M33-1 and the M9W. The test point is

on module M33-1 (Figure 5-5), while the adjustment controls are on module M9W (Figure 5-6). Set FREQUENCY to 250 MHz, and other front-panel controls as in Section 5.3.4. Connect scope vertical input (DC, 1 V/cm) to M33-1 pin 5. Adjust M9W control (D) for a 0 V scope indication.

Set front-panel controls as follows:

 $\begin{array}{lll} \text{MODE} & \text{FM x 10} \\ \text{FREQ} & \text{1 kHz} \\ \text{MODULATION FM/AM} & \text{maximum} \end{array}$

Set scope vertical input (on M33-1 pin 5) for AC, 50 mV/cm. Adjust M9W control (C) for minimum (null) indication of 1 kHz sine wave on scope.

5.3.8 PHASE-LOCKED LOOP #4 ADJUSTMENT

Calibration of P.L.L. #4 involves three modules: M2M, M9W and the M34. Test points are located on modules M2M and M34 (Figure 5-5), while adjustment controls are located on modules M2M and M9W (Figures 5-4 and 5-6).

Set FREQUENCY switches for 250.000 MHz and other front-panel controls as in Section 5.3.4. Connect digital voltmeter to M2M pin 8; then, adjust M2M 250 MHz control (Figure 5-4) for a 0.00 V reading on voltmeter. The voltmeter may now be disconnected.

Connect frequency counter to RF OUT connector and connect scope vertical input (DC, 1 V/cm) to M34 pin 8. Adjust M9W control (A) for 0, ± 1 V, on scope. The counter should indicate a frequency of 250 MHz.

NOTE

Due to the way the M34 locks on harmonics of 40 MHz, it is possible to adjust M9W control (A) for "O V" at multiples of 40 MHz offset from 250 MHz. If this happens, it will be necessary to readjust M9W control (A) several turns to

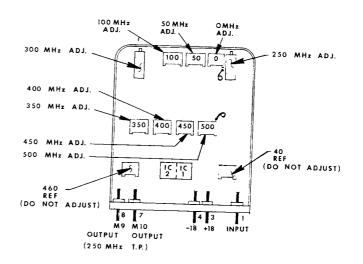


Figure 5-4. M2M Module

break lock and relock at the next multiple of 40 MHz until "0, ± 1 V", can be obtained with a $25\overline{0}$ MHz counter reading.

Set FREQUENCY switches for 300 MHz and adjust M2M 300 MHz pot. for 0, ±3 V, on scope with a counter reading of 300 MHz. Repeat this step, using applicable M2M pots, for frequencies of 350, 400, and 450 MHz. Refer to Figure 5-4 for M2M pot locations.

Set FREQUENCY switches to 500 MHz. Adjust M2M 500 MHz pot for a scope reading near 0 V. Increase frequency to 520 MHz and note scope indication; then, adjust 500 MHz pot to give scope indications at 500 and 520 MHz that are symmetrical about 0 V.

Set FREQUENCY to $100~\mathrm{MHz}$ and adjust M2M $100~\mathrm{MHz}$ pot for 0, $\pm 3~\mathrm{V}$, on scope and a counter reading of $100~\mathrm{MHz}$. Repeat using appropriate M2M pots, for $50~\mathrm{MHz}$ and $0~\mathrm{MHz}$.

Connect digital voltmeter to M34 pin 14, Leveler TP. Step through frequency range from 1 to 520 MHz in 10 MHz steps to find frequency having highest leveler voltage; then adjust M9W control (B) for +1.0 VDC at this frequency setting.

Model 3001

5.3.9 PHASE-LOCKED LOOP #5 ADJUSTMENT

Adjustment controls for P.L.L. #5 are located on Modulation Board C316-2 and module M29-1 (Figure 5-6), while the MOD TP is located on underneath side of the chassis (Figure 5-5). Connect frequency counter to front-panel RF OUT connector and digital voltmeter to chassis MOD TP; then, set other front-panel controls as follows:

FREQUENCY
Freq VERNIER
MODE
FREQ
MODULATION FM/AM
OUTPUT VERNIER
OUTPUT Dial

2.000 MHz
"0" kHz
FM x 10
FM x 10
Maximum
Clockwise
H10 dBm

NOTE

Modulation Board C316-2 contains a Size Adj. pot (C) and a Balance Adj. pot (D) which are factory adjustments. DO NOT change setting of these two controls.

Refer to Figure 5-6 for control location, and adjust Modulation Board pot (A) for a $+5.00 \pm .01$ V reading on voltmeter. Set FM/AM slider to minimum; the voltmeter should indicate 0 V ± 20 mV. Disconnect voltmeter from MOD TP.

Adjust M29-1 control (B) to produce a frequency counter reading of 2.000 MHz +100 Hz. Increase FM/AM slider to maximum and adjust M29-1 control (A) for a counter reading of 2.100 MHz +100 Hz.

Set MODE to FM x1, and adjust Modulation Board control (B) for a counter reading of 2.010 MHz ± 100 Hz.

5.3.10 METER BOARD CALIBRATION - C315

To adjust output meter, the unit must rest on its bottom surface (normal operating position). Momentarily turn OFF power to instrument and mechanically zero output meter with front-panel zero

adjust screw. The meter needle should bisect dot at left end of meter scale. Restore power to instrument and allow it to stabilize.

Set the OUTPUT VERNIER fully ccw; then, adjust Meter Board pot (B) until meter needle again bisects dot at left end of meter scale. See Figure 5-6 for location of Meter Board pots. Set VERNIER completely cw and adjust Meter Board pot (A) for a +3 dBm output meter reading.

Set front-panel controls as follows:

FREQUENCY 50.000 MHz
MODF CW
MODULATION FM/AM minimum
OUTPUT Dial +10 dBm
OUTPUT VERNIER Fully clockwise
FREQ VERNIER CAL

Calibrate power meter and its thermistor or power sensor. Set power meter to the +15 dBm range; then connect thermistor or sensor to RF OUT connector of Model 3001.

Adjust Meter Board pot (F) for a +13 dBm power meter reading. Set the OUTPUT VERNIER for -7 dBm reading on output meter and set power meter to the +5 dBm range. Adjust Meter Board pot (E) for +3 dBm power meter reading. Again set power meter to the +15 dBm range and turn front-panel VERNIER fully cw. Repeat this paragraph until +13 dBm and +3 dBm power meter readings are obtained without further adjustment of Meter Board pots (E) and (F).

Set OUTPUT dial to 0 dBm and power meter to the +5 dBm range. With VERNIER completely cw, adjust Meter Board pot (C) for a +3 dBm power meter reading. Turn VERNIER for -6 dBm reading on OUTPUT meter and set power meter to the -5 dBm range. Adjust Meter Board pot (D) for -6 dBm power meter reading. Repeat this paragraph until +3 dBm and -6 dBm power meter readings are obtained without further adjustment of Meter Board pots (C) and (D).

Model 3001 MAINTENANCE

Set Model 3001 front-panel controls as follows:

FREQUENCY 100.000 MHz
MODE AM
FREO DC
MODULATION FM/AM Minimum
OUTPUT Dial 0 dBm

Set power meter to its 0 dBm range and adjust OUTPUT VERNIER for a -3 dBm reading on power meter. Set power meter to the +5 dBm range and place AM/FM slider to 100% AM. Adjust Meter Board pot (G) for +3 dBm reading on power meter. This 6 dB increase corresponds to 100% amplitude modulation.

5.3.11 FINAL FREQUENCY CHECK - M30-1

Connect frequency counter to signal generator RF OUT connector, and set front panel controls as specified in Section 5.3.4. Note frequency reading on counter; if it does not agree with the selected frequency within accuracy specifications, very carefully adjust M30-1 Frequency Adjust trimmer (See Figure 5-5) until desired frequency is obtained.

5.4 TROUBLESHOOTING

Effective troubleshooting requires a thorough understanding of block diagrams and circuit description located in Section 3 of this manual; then the Performance Tests in Section 4 and Calibration Procedures in Section 5 will aid in localizing the trouble symptom to a particular module or PC board. Once this has been accomplished the module or board can be replaced; or, repaired with aid of the proper schematic and parts layout diagram. In general, it is preferable to replace a defective module or PC board assembly.

Equipment troubles are frequently due simply to improper control settings; therefore, before engaging in a troubleshooting procedure, be sure front-panel controls are set in proper operating position. Refer to the operating instructions in Section 2 of this manual for complete explanation of each control's function along with typical operating instructions.

After verifying that trouble is not improper setting of the controls or test setup, make a thorough visual inspection of instrument for such obvious defects as loose or missing screws, broken wires, defective module-pin sockets, loose RF cables, and burned or broken components.

After localizing the problem, voltage and resistance checks will help find the defective component.

For troubleshooting purposes, it is permissible to operate the Model 3001 with any of the plug-in modules or RF cables removed; however, the instrument should be turned off when removing or installing modules. If substitute modules are available, possibly from another Model 3001, this provides an easy method of verifying if a suspected module is defective.

RF cables can be disconnected from the module output connectors; then a power meter or spectrum analyzer can be connected directly to the module connector for power level or frequency measurements. Fabrication of a short coax adapter cable, terminated in a mating connector for the modules on one end and a BNC connector on the other, will facilitate connection of test equipment.

The front-panel Accuracy lamps together with the four internal module "unlock indicator" lamps aid in troubleshooting phase-locked loop problems. One module in each loop contains an indicator lamp which lights to indicate when that loop is unlocked. The lamps indicate only which loops are unlocked, but not which module is at fault.

A problem in a power supply may cause many symptoms pointing to other areas and should be checked when the symptom does not clearly indicate a specific problem. Loss of the -18 V supply, for example, will cause the Accuracy lamp to flash; while loss of the +18 V supply will extinguish all lamps. The +18, -18 and +7.3 V supplies comprise the DPS-2 power supply which forms the rear panel of the instrument. Performance of these supplies is indicated in the CALIBRATION PROCEDURE.

5.4.1 TROUBLESHOOTING HINTS

Following is a list of several typical symptoms, accompanied by the possible cause(s) or a troubleshooting procedure. It is assumed the instrument has been properly calibrated previously, and that a warmup period will precede trouble-shooting.

INTERMITTENT OPERATION - Defective module-pin sockets or loose RF cables.

LOW RF OUTPUT (+10 dBm RANGE) - If power is 10 dB low on this range but is correct on the 0 dBm range, micro-switch S1 mounted on attenuator is defective, is not being actuated by attenuator shaft, or a switch wire is disconnected.

LOW OR NO RF OUTPUT (ANY RANGE) - Defective attenuator or RF cables connecting to input or output of attenuator, defective meter board, defective module M10W or M9W.

Check voltage on pin 15 of module M10W. With OUTPUT VERNIER fully clockwise, the voltage should be approximately as follows: -2.5 VDC on +10 dBm range; -0.7 VDC on 0 dBm range. These voltages indicate proper operation of the meter board; while other values, particularly positive voltages, indicate a defective IC or other problem on the meter board.

Next, check RF power directly at M10W output. If it is correct, the trouble lies in the attenuator or its RF cables. If module M10W output is low, measure module M9W RF output - this should be approximately -10 to -11 dBm. If this

level is correct, module M10W is defective; while if the level is low, Sweep Oscillator M9W is defective.

OUTPUT METER DOES NOT MOVE - If meter is pegged at either end of scale, the trouble is probably a defective component on meter board C315; while if meter remains at mechanical zero, meter movement may be open or a meter board component may be defective.

UNLEVELED LAMP ON - RF OUT connector not terminated in 50-ohm load, AM percentage set so that peak of modulated output exceeds +13 dBm, defective module M10W, defective attenuator or connecting RF cables.

Connect power meter directly to M10W output. Set OUTPUT dial and VERNIER for a +13 dBm reading on power meter at 50.000 MHz. Step through frequency range from 10 to 520 MHz in 10 MHz steps. A power meter reading of +13 dBm +0.5 dB with unleveled lamp OFF indicates proper operation of module M10W. output is correct at M10W but the unleveled lamp is ON, the trouble is probably a defective lamp-driver circuit in module M10W. With proper operation of module M10W, connect power meter directly to attenuator output and repeat above steps. If attenuator output is correct, trouble is due to a defective RF cable or possibly a poor ground connection at RF OUT connector.

ACCURACY LAMP FLASHES CONTINUOUSLY - A steady light in CW mode but flashing in FM modes indicates a defective M29-1 or M33-1 module. If Accuracy lamp flashes in all modes, one or more of the phase-locked loops is open; see PHASE-LOCKED LOOP TROUBLES below.

NOTE

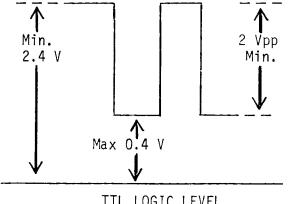
Above the normal frequency range of the instrument (in the vicinity of 560 MHz), it is normal for phase-locked loop #4 to unlock causing the Accuracy lamp to flash.

Model 3001 MAINTENANCE

PHASE-LOCKED LOOP TROUBLES - An open or unlocked loop, indicated by a lighted module lamp, can be caused by a number of factors, including: low AC - input voltage, low DC-supply voltages, improper phase-locked loop DC voltages, an open or shorted RF cable or a defective module.

A defective RF cable or module can have a "chain-reaction" effect that causes two or more loops to unlock. example, loss of the 1 kHz signal to module M31 will cause PLL #1 to unlock; thus, module M31 may not supply a proper signal to module M34, causing PLL #4 to unlock. Failure of the 40 MHz crystal oscillator in module M30-1 will cause

all loops to unlock, since all six reference frequencies will be lost.


Table 5-2 lists typical RF signal-input levels for each of the phase-locked loops. Those signals having a TTL level or 1 V level may be measured with a high-frequency oscilloscope; the other signals are best measured with a spectrum analyzer (dBm), or a 50-ohm detector and calibrated scope (mV).

NOTE

The TTL waveform shown in Table 5-2 is for illustration of voltage values only, and does not necessarily represent the observed waveshape.

TABLE 5-2. PHASE-LOCKED LOOP RF-SIGNAL LEVELS

P.L.L. _#_	MODULE	INPUT-SIGNAL FREQUENCY	INPUT-SIGNAL LEVEL dBm (mV)	MEASURED AT
1	M31	1 kHz	TTL	M30-1 (W13)
2	M32	1 MHz 1440 MHz	TTL -12 to -15 dBm (20 mV)	M30-1 (W12) M30-1 (W9)
3 & 5	M33-1	1198 MHz 1200 MHz (120 comb) 2 kHz 1.9 to 2.1 MHz	-10 dBm <u>+3</u> dB (150 mV) -15 dBm <u>+</u> 5dB (75 mV) TTL 1 volt pp	M9W (W5) M30-1 (W10) M30-1 (W11) M29-1 (W7)
4	M34	1198 to 1718 MHz 1448 to 1487 MHz 40 to 280 MHz (40 comb) 10 to 9.001 MHz	-10 dBm +5 dB (25 mV) -2 dBm +3 dB (200 mV) -10 dBm +3 dB (1 V) TTL	M9W (W4) M32 (W8) M30-1 (W6) M31 (W14)

TTL LOGIC LEVEL

Phase-Locked Loop #1 - Unlocking of this loop may be caused by a defective module M31, module M30-1 or RF cable connecting M30-1 to M31.

Connect digital voltmeter to M31 test point (D, Figure 5-6). Note voltmeter readings at frequencies of 200.000 and 200.999 MHz. If voltage is 12 to 16 VDC, check 1 kHz signal as listed in Table 5-2. If 1 kHz signal is correct, module M30-1 is operating properly; then, check RF cable between M30-1 and M31. If proper 1 kHz signal is being applied to M31, check for 7.3 V on pin 6, +18 V on pin 7, and -18 V on pin 8 of M31. If input signal and DC voltages are correct, module M31 is defective.

Phase-Locked Loop #2 - Unlocking of loop #2 can be caused by defective modules M22, M30-1, M32 or RF cables connecting M30-1 to M32.

Connect digital voltmeter to M32 pin 11 and observe voltmeter reading while stepping through frequency range from 200 to 239 MHz in 1 MHz steps. The voltmeter reading should change -0.2 V per MHz from 0 V at 200 MHz to -7.8 V at 239 MHz. These voltages indicate proper operation of module M22.

Module M30-1 can be checked by measuring the 1 MHz and 1440 MHz signals directly at the M30-1 - the levels specified in Table 5-2 indicate proper operation of module M30-1. Check connectors and RF cables connecting M30-1 to module M32. Check for +18 V on pin 7, -18 V on pin 8, and 7.3 V on pin 9 of M32. If all input signals and DC voltages to module M32 are normal, but the M32 LED is ON, module M32 is defective.

Phase-Locked Loops #3 and #5 - The LED indicator on module M33-1 serves both P.L.L. #3 and P.L.L. #5. If M33-1 LED is ON, determine which loop is defective by switching FREQUENCY VERNIER out of CAL position. If M33-1 LED goes OFF, trouble is in P.L.L. #5; if LED stays ON, trouble is in P.L.L. #3.

P.L.L. #3 consists of modules M33-1 and M9W. It is possible that P.L.L. #3 can be restored to operation simply by recalibrating per paragraph 5.3.7, and this should be attempted. If adjusting M9W control (D) has no effect on M33-1 pin 5 voltage, problem is in module
M33-1; however, if pin 5 voltage changes but phase lock cannot be established, or if pin 5 voltage cannot be set to within 5 volts of 0 V, trouble is in M9W. Measure M33-1 Leveler TP (pin 14): If +0.5 to 5 VDC, trouble is probably in module M33-1; however, if greater than 5 VDC, trouble is probably in module M9W or M30-1. Check M30-1 reference frequencies and M9W output level as shown in Table 5-2 to determine which module is defective.

P.L.L. #5 consists of modules M29-1 and M33-1. With Freq VERNIER in CAL position, measure P.L.L. #5 voltage on M29-1 pin 6. Adjust M29-1 control (B) for 0 V on pin 6. If, while adjusting M29-1 from 1.9 to 2.1 MHz this voltage does not move, the problem is in module M33-1. If the voltage adjusts, but will not stay locked, the trouble is in module M29-1.

Phase-Locked Loop #4 - Unlocking of loop #4 may, under certain conditions, be caused by problems originating in the other loops. Therefore, loops #1, 2, and 3 should be operating properly before troubleshooting loop #4.

Unlocking of loop #4 can be caused by defective modules M2M, M22, M9W, M30-1, M31, M32, M34 or connecting RF cables.

Connect digital voltmeter to M2M pin 1. The voltmeter reading should be 0.00 V with FREQUENCY switches set at 000 MHz, -2.5 V at 250 MHz and -5.0 V at 500 MHz. These voltages indicate proper operation of module M22. Connect voltmeter to M2M pin 8. The voltmeter reading should be +5 to +8 V at 000 MHz, 0 V at 250 MHz and -6 to -10 V at 500 MHz. If these voltages are obtained, module M2M is operating properly.

Model 3001 MAINTENANCE

Measure the Wide Oscillator signal at module M9W. The frequency will be between 1198 MHz and 1718 MHz, depending upon the setting of the FREQUENCY switches. If the signal level is as specified in Table 5-2, module M9W is probably operating correctly.

Measure the 40 comb line at module M30-1. The 40 MHz harmonics from 40 MHz to 280 MHz should be fairly equal in amplitude and the level should be as specified in Table 5-2. This level indicates proper operation of the M30-1 module.

Measure the 1448 MHz to 1487 MHz signal at module M32. The exact frequency is dependent upon the setting of the MHz FREQUENCY switches. If the level is as specified in Table 5-2, the M32 is operating properly.

Next, measure the 10 MHz to 9.001 MHz output of the M31 module. The output will be 10.000 MHz with the kHz FRE-QUENCY switches set to 000 kHz, and the frequency will decrease to 9.001 MHz with the kHz switches set to 999 kHz. If the signal level is as specified in Table 5-2, module M31 is operating properly.

If output of each of the above modules is correct, check connectors and RF cables connecting M9W, M31, M32 and M30-1 to module M34. Check for +7.3 V on pin 2, +18 V on pin 3, and -18 V on pin 4 of M34. If all input signals and DC voltages to module M34 are correct, but M34 module lamp is ON, module M34 is probably defective, but trouble could be caused by M9W.

A further check of the M34 can be made by monitoring M34 pin 8 with a digital voltmeter while stepping through the frequency range from 10 MHz to 520 MHz in 10 MHz steps. The voltmeter reading should be 0 ± 3 V; however, a defective M34 may give a voltage reading of 12 to 16 volts.

BCD FREQUENCY SWITCHES - Troubles in the BCD switch circuits may be caused by a defective switch, loose or disengaged switch connector or a broken switch wire.

Five of the switches utilize four wires plus a ground to select decimal digits from 0 through 9. The 100's MHz switch uses three wires plus ground, since it only needs to select digits between 0 and 5. A "BCD Truth Table", applicable to each of the six switches, is given in Table 5-3.

Suspected switch problems can be checked by referring to Table 5-3 and the Model 3001 Wiring Diagram to determine which module pins are grounded for a particular frequency. For example, to select a frequency of 200.500 MHz, M22 pin 3 is grounded by selecting digit 2 on the 100's MHz switch, and M31 pins 2 and 4 are grounded by digit 5 on the 100's kHz switch.

TABLE 5-3. BCD FREQUENCY SWITCHES

	
Decimal	BCD Wires
Digit	8 4 2 1
0 1 2 3	 0 0 -
4	- 0
5	- 0 - 0
6	- 0 0 -
7	- 0 0 0
8	0
9	0 0
	Grounded by Switch. NOT Grounded.

MODULATION TROUBLES - The Modulation Board (C316-2) is the most common cause of modulation problems, particularly when the modulating signal is lost. Non-linear amplitude modulation, at

MAINTENANCE Model 3001

higher-audio frequencies from an external source, may be caused by the M10W output amplifier.

Set front-panel controls as follows to determine presence of modulating signal:

MODE	AM
FREQ	400 Hz
MODULATION FM/AM	Maximum
OUTPUT Dial	O dBm
OUTPUT VERNIER	Fully clockwise
FREQ VERNIER	CAL

Connect oscilloscope vertical input to MOD TP. The scope should display a 10 V peak-to-peak sine wave at a frequency of 400 Hz (2.5 ms period). Set FREQ switch to 1 kHz - scope display should be a 10 Vpp sine wave with a period of 1 ms. If the 10 V signals are not obtained, check for +7.3 V on pin 8, +18 V on pin 1, and -18 V on pin 2 of C316-2 Modulation Board. If DC voltages are normal, the Modulation Board is defective.

AM Troubles - Connect scope vertical input to pin 3 of C316-2 Mod. Board and check for a 10 Vpp sine wave; then, connect scope vertical input to pin 4 of Meter Board C315 and again check for a 10 V sine wave. Presence of the sine wave at this point indicates proper operation of Modulation Board and wiring.

Connect scope vertical input to pin 2 of C315 Meter Board and check for a sine wave having an approximate amplitude of 1.75 Vpp. If the 1.75 V signal is not present, check for +18 V on pin 6 and -18 V on pin 5 of Meter Board. If DC voltages are normal, Meter Board C315

is defective, or a wire is disconnected from Attenuator switch S1.

Check for $1.75~\mathrm{Vpp}$ sine wave on pin 15 of module M10w. If sine wave is normal at this point, but amplitude-modulation is abnormal, amplifier M10W is defective.

FM Troubles - Set MODE to FM x 10, and check for 10 Vpp sine wave on pin 6 of Modulation Board C316-2; then, connect scope vertical input to pin 16 of module M29-1 and again check for a 10 V sine wave. A 400 Hz or 1 kHz 10 V sine wave at this point indicates proper operation of Modulation Board and wiring.

Remove RF cable W7 from top of module M29-1; then check for 1 volt peak-to-peak 1.9/2.1 MHz signal at this connector. If this signal is not present, check for +18 V on pin 3 and -18 V on pin 4 of M29-1. If DC voltages are normal, FM problems are caused by a defective module M29-1. If the 1.9/2.1 MHz signal is present at M29-1 connector, FM problems are probably caused by a defective M33-1 module.

5.4.2 PC-BOARD PARTS LOCATION DIAGRAMS

To aid in servicing or troubleshooting the Model 3001, the following printedcircuit board parts location diagrams are provided in Section 7 immediately in front of the associated schematic.

Module or Board	Schematic No.
C315	13
C316-2	4
C352 (DPS-2 PCB)	2
M2M	9
M22	8

5.4.3 MODULE REPLACEMENT

While in many cases the Model 3001 will work satisfactorily after simply replacing a defective module, to maintain the high accuracy of which the unit is capable, module replacement should be followed by calibration of the affected circuits. Table 5-4 lists each module and the adjustment needed.

TABLE 5-4. REPLACEMENT MODULE CALIBRATION

MODULE REPLACED	ADJUSTMENT REQUIRED (See indicated paragraphs in Calibration Procedure)
M2M Sweep Drive	Reset Phase-Locked Loop #4 (Section 5.3.8)
M9W Sweep Oscillator	Reset Phase-Locked Loops #3 and #4 (Sections 5.3.7 and 5.3.8)
M10W Output Amplifier	Recalibrate C315 Meter Board (Section 5.3.10)
M22 DAC	None required
M29-1 FM Reference	Reset Phase-Locked Loop #5 (Section 5.3.9)
M30-1 Crystal Reference	Adjust Crystal Frequency (Section 5.3.4 and 5.3.11)
M31 kHz Steps	Set Phase-Locked Loop #1 (Section 5.3.5)
M32 MHz Steps	Adjust Phase-Locked Loop #2 (Section 5.3.6)
M33-1 Narrow Osc. Lock	Adjust Phase-Locked Loop #3 (Section 5.3.7)
M34 Wide Osc. Lock	Set M34 pin 14 for +1.0 VDC (last para. Section 5.3.8)
C315 Meter Board	Adjust Meter Board Calibration (Section 5.3.10)
C316-2 Modulation Board	Adjust Phase-Locked Loop #5 (Section 5.3.9)
DPS-2 Power Supply	Adjust +18 V; check -18 V and 7.3 V (Sections 5.3.1 through 5.3.3).

	AND THE PROPERTY OF STREET, ST
	(5.7)
	and the state of t
	والمتابسة كالمستقدادي والجرار كالجائبة
	Angelo and best to the second of the second

Model 3001 MAINTENANCE 0 0 0 0 0 0 0 0 0 0 0 000 0 \oplus 0 **()**FREQUENCY ADJUST 7 MODULATION TP ②PLL 2 TP
③PLL 3 TP
④PLL 4 TP
⑤PLL 5 TP 8 250 MHz TP LEVELER TP WIRE COLOR CODE GREEN +7.3V 6PLL 6 TP ORANGE +18V (PLL1TP TOP OF M 31) YELLOW -18V (OTHERS UNASSIGNED)

Figure 5-5. Test Points, Chassis Bottom View

			A COMPANY OF THE PARTY OF THE P
			AND THE PROPERTY COMMENTS OF THE PROPERTY OF T

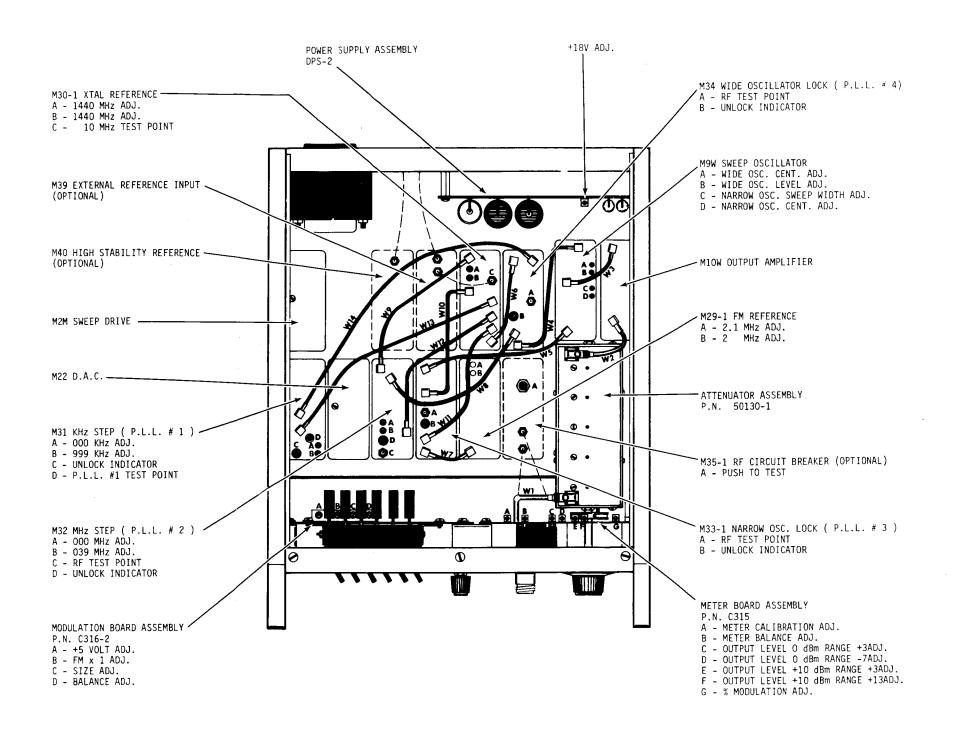


Figure 5-6. Adjustment Controls and Cable Connections

SECTION 6 REPLACEABLE PARTS

6.1 INTRODUCTION

This section contains a list of all replaceable electronic parts for the instrument.

In an assembly containing one or more subassemblies, the assembly parts list is divided to separate the subassemblies. The subassembly three-digit circuit reference on the schematic is represented in the REFERENCE SYMBOL column by the last one or two digits. The first digit

represents the subassembly on which the part is located. The subassembly (100, 200. . .) is indicated next to the reference symbol heading. The first parts list corresponds to the Wiring Diagram in Section 7. The assembly parts lists follow in alpha-numerical order.

6.2 MANUFACTURERS CODE

The following code is used on the parts list to identify the manufacturer.

		-	-		TILLWOURCE, WISCONSIN
		-	-		Advance Components, Inc Centerbrook, Connecticut
A-I)	•	•		Analog Devices Norwood Massachusetts
AEI	Ł.				AVX
A-3					Alan Industries Columbus, Indiana
AIN	Ι.				Alpha Industries, Inc Woburn, Massachusetts
ALC	: ,				Alco Electronics Products, Inc Lawrence, Massachusetts
AMI	٠,				AMP, Inc
API					Ampheno1
A-F	٠,				American Plasticraft (APCO) Chicago, Illinois
APX	٠.				Amperex
ARC					ARCO Electronics
ASE					Airco Speer Electronics Nogales, Arizona
AVI					Avantek
BEK					Beckman Instruments, Inc Fullerton, California
BEL					Belden Chicago, Illinois
BER					Berg Electronics New Cumberland, Pennsylvania
BOU					Bourns Riverside, California
BUS					Bussman
CAM					Cambion
CAR					Carling Electric, Inc West Hartford, Connecticut
C-D					Cornell Dubilier Newark, New Jersey
C-E					Clinton Electronics Rockford, Illinois
COM					Corning Glass Works
CHE			_	-	Cherry Electrical Products, Prod Waukegan, Illinois
C		_		-	Cutler-Hammer Milwaukee, Wisconsin
C-I					Components Incorporated
C-J	-	_	-	-	Cinch Jones
C-K				-	C & K Components Watertown, Massachusetts
CKI	_	-	-	-	CTS Knight, Inc
C-L			_	-	Centralab
CLA		-	-	-	Clairex Electronics Mount Vernon, New York
CTS					Chicago Telephone Systems Elkhart, Indiana
C-W					C-W Industries
DAL		-	-	-	Tittadelphia, leilisylvania
DEL	-	-	-	-	naitsuate. New 101k
DIO				-	Diodes, Inc
					Drake Mfg, Company
ETP	•	•	•	•	Erie Technological Prod., Inc Erie, Pennsylvania
FCD	•	•	•	•	Fairchild
- 00	•	•	•	•	Mountain View, California

REPLACEABLE PARTS

G-E	. General Electric Syracuse, New York
G-H	. Grayhill La Grange, Illinois
G-I	
HEL	. Helipot Anaheim, Californiá
HEY	
HHS	
HIT	
Н-Р	. Hewlett-Packard Palo Alto, California
INT	
IRC	
_ITT	
JEF	
JEW	. Jewell Electrical Instruments Manchester, New Hampshire
JON	
KEM	
KID	. Kidco, Inc Medford, New Jersey
KIN	. Kings
KSW	
LIT	
M-A	
MAL	
MDC	
M-E	
M-O	
MOL	
MOT	·
NAT	
NEC	· · · · · · · · · · · · · · · · · · ·
N-T · ·	
OHM	
0-S	
Р-В	. ,
POM	, , , , , , , , , , , , , , , , , , , ,
Q-C	
RAY	
RCA	·
RMC	
S-C	
SCC	11
SEL	
SEM	
S-G	· · · · · · · · · · · · · · · · · · ·
SGM	
S-I	• • • • • • • • • • • • • • • • • • • •
SIG	
SPE	
SPR	
SSS · · ·	
S-T	
STR · · ·	Stettner Trush Cazenovia, New York
SYL	Sylvania
SYS	·
THR	
T-I	• • • • • • • • • • • • • • • • • • • •
TRW	
VAC	
VAR • • •	
W-E	, ,
W-I	
WSD · · ·	
WSR · · ·	· · · · · · · · · · · · · · · · · · ·
	,

D = = = = : : :			T	REV	
REFERENCE SYMBOL	DESCRIPTION	WAVETEK PART NO.	ļ	UFACTURER	- '
		TANTINO.	CODE	NUMBER	Ω
C315 C316-2 DPS-2 M2M M9W M10W M22 M29-1 M30-1 M31 M32 M33-1 M34	MODULES AND CARDS Meter Board Modulation Board Power Supply Sweep Drive Sweep Oscillator Output Amplifier DAC FM Reference Crystal Reference kHz Steps MHz Steps Narrow Oscillator Lock Wide Oscillator Lock	A500-315 A500-316-2 A500-351 C510-M2M C510-M9W C510-M22 C510-M29-1 C510-M30-1 C510-M31 C510-M32 C510-M33-1 C510-M34	W-I W-I W-I W-I W-I W-I W-I	A500-315 A500-316-2 A500-351 C510-M2M C510-M9W C510-M22 C510-M29-1 C510-M30-1 C510-M31 C510-M32 C510-M33-1 C510-M34	1 1 1 1 1 1 1 1 1
W1 thru W14 50130-1	ASSEMBLIES Cable Assemblies Step Attenuator, 50 ohm	WX3001 50130-1	W-I W-I	WX3001 50130-1	14
" <u>J 100</u> " 1 2 3,4,5,6,7,8 9 10 12	CONNECTORS (JACKS) Jack, 36 pin Jack, 9 pin Jack, 5 pin Jack, 6 pin Jack, 12 pin BNC receptacle	MC000-054 MC000-067 MC000-065 MC000-076 MC000-107 JB110-941	MOL MOL AMP MOL MOL APL	1772-36R 09-50-3091 583369-1 09-50-3061 09-50-3121 31-2221	- -
" <u>P 100</u> "	CONNECTORS (PLUGS) AC Plug/Cord Assembly Remote Programming Plug Contacts for above	WL002-088 MC000-055 MC000-019	BEL MOL MOL	17237 1772-36-P1 1854	
" <u>s 100</u> " 1,2,3,4,5,6	SWITCHES 10 position, BCD output see assembly C316-2 parts list				-

C315 C315-1 REV G

		1	т	010-1	
REFERENCE		WAVETEK	MAN	UFACTURER	_
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	à
		17111110.	CODE	NONDLA	Щ
" <u>C</u> "	CAPACITORS				
1	Electrolytic, .47 uF 50 V	CE113-447	TRW	935	1
"CR"	DIODES				
1	Red light emitting diode	DL000-001	NAT	NS102	-
2,3	Silicon Junction, 100 PIV 750 mA	DR000-001	ITT	1N4004	2
"IC "	INTEGRATED CIRCUITS				
1,2,3	Dual Operational Amplifier	IC000-005	MOT	MC1458PI	3
'' <u>M</u> ''	METERS				_
1	3 - scale volt/dBm meter	MI000-004	W-I	MI000-004	1
			1		
" <u>P</u> "	CONNECTORS (PLUGS)				
1	6 pin locking plug	MC000-075	MOL	09-65-1061	1
" <u>R</u> "	RESISTORS			007505	
1,22	Variable, 2 Kilohm	RP130-220	BOU	89PR2K	2
2	Fixed Comp., 8.2 Kilohm ±5% 4 W	RC103-282	A-B	CB8225	1
3	Fixed Metal Film, 36.5 Kilohm ±1%	RF213-365	CGW	RN55D	1
4,28	Fixed Comp., 33 Kilohm ±10% ¼ W	RC104-333	A-B	CB3331	2
5,6	Fixed Metal Film, 10 Kilohm ±1%	RF213-100	CGW	RN55D	2
7,23	Fixed Comp., 20 Kilohm ±5% ½ W	RC103-320	A-B	CB2035	2
8	Fixed Métal Film, 2.74 Kilohm ±1%	RF212-274	CGW	RN55D	1
9	Fixed Metal Film, 11.3 Kilohm ±1%	RF213-113	CGW	RN55D	1
10	Fixed Metal Film, 3.92 Kilohm ±1%	RF212-392	CGW	RN55D	1
11	Variable, 10 Kilohm	RP140-310	A-B	70A1N044S	
		DD120 220		103U	1
12,15,17,18,	Variable, 20 Kilohm	RP130-320	BOU	89PR20K	5
26			· _	an 5601	
13	Fixed Comp., 5.6 Kilohm ±10% ¼ W	RC104-256	A-B	CB5621	1
14	Fixed Comp., 220 Kilohm ±10% ½ W	RC104-422	А-В	CB2241	1
16,20	Fixed Comp., 10 Kilohm ±10% ¼ W	RC104-310	1	CB1031	2
19	Fixed Comp., 1 Megohm ±10% ¼ W	RC104-510	A-B	CB1051	1
21	Fixed Metal Film, 15.8 Kilohm ±1%	RF213-158	CGW	RN55D	1
24	Fixed Comp., 68 Kilohm ±10% ¼ W	RC104-368	A-B	CB6831	1
25	Fixed Comp., 100 Kilohm ±10% ¼ W	RC104-410	A-B	CB1041	1
27	Fixed Comp., 15 Kilohm ±10% ¼ W	RC104-315	A-B	CB1531	
" <u>S</u> "	SWITCHES	01000 000		E C 2001	_
1	SPDT Limit Switch	SM000-006	CHE	Е6300Н	-
	T - 0215 1 D-1-4- 4b - 5-11 6215	norta lict	 		
D O	For C315-1 Delete the following from C315		A-B	CB8225	1
R2	Fixed comp., 8.2 Kilohm +5%, 4 W	RC103-262 RC103-320	A-B	CB2035	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
R7	Fixed, comp., 20 Kilohm $\pm 5\%$, $\frac{1}{4}$ W	KC103-320	Land	0.02000	*
	For C315-1 Add the following:				
R2	Comp, 2.0 Kilohm +5%, ¹ 4 W	RC103-220	A - B	CB2025	1
R7	Met flm, 19.1 Kilohm, +1%, 1/8 W	RF213-191	CGW	RN55D	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
X /	Het 11m, 19.1 K110hm, 11%, 1/0 "	210 171			-
			L		لــــا

C316-2 and C316-3 REV C

	MODULATION BOAR	D			
REFERENCE SYMBOL	DESCRIPTION	WAVETEK PART NO.	MAN	NUFACTURER	⊣'
			_1		Q
	The following is a list for C316-2; see	sheet 2 for	C316-3	3 differences	S
" <u>C</u> "	CAPACITORS	1			
1,6,12,13	Ta, $0.47 \mu F \pm 10\%$, 50 V	CE113-447	TRW	Type 935	4
2,3,7,8	Sil mica, 470 pF ±5%, 500 V	CM101-147	ARC	J 4	4
4,9,10	Sil mica, 1000 pF ±5%, 500 V	CM101-210	ARC	i	3
5	Cer disc, 330 pF ±5%, 1 kV	CD104-133	SPR		1
11	Cer disc, .001 µF ±20%, 1 kV	CD102-210	SPR	1	1
14	Cer disc, .05 µF +20%, 100 V	CD102-210	SPR		
15	Cer disc, .01 µF ±20%, 100 V	CD103-310	SPR	1	1
16	Ta, 10 μF ±20%, 20 V	CE120-010	ACI	1	1
	1 220%	CE120-010	ACI		1
17,18	Elect, 10 μF +150%-10%, 12 V	CE105-010	SPR	20C2 TE-1204	2
"CR"	DIODES				
1,2,3,4,7	Si, Junction, 100 PIV	DR000-001	DIO	1N4004	5
5,6,8	Red LED with mounting Kit	DL000-001	NAT	NSL5046	3
	•				
"IC "	INTEGRATED CIRCUITS				
1,2	Dual Op. Amp. RC4558DN RAY only	IC000-027	W-I	IC000-027	2
3	Dual Operational Amplifier, 8 pin, DIP	IC000-005	MOT	MC1458P1	1
4	Timer, 8 pin, DIP	IC000-006	MOT	MC1455P1	1
"oc "	OPTO-COUPLERS				
1	LED/Photocell	MP000-002	VAC	VTL5C3	1
"P "	CONNECTORS (PLUGS)				
1 1	12 pin locking plug	MC000-106	MOL	09-65-1121	1
			110.11	0, 0, 1121	
"0 "	MD AVG Tomon G				
1 4 1	TRANSISTORS				
1,2	N-channel, JFET	QA054-580	MOT	2N5458	2
3,4	NPN, Si	QA038-541	G-E	2N3854A	2
ا	PNP, Si	QB000-009	TOM	MPS3702	1
"R "	PEGT GMOD G				
l ————————————————————————————————————	RESISTORS			İ	
1*,17,30	Comp, $270 \text{ k}\Omega \pm 10\%$, $\frac{1}{4} \text{ W}$	RC104-427	A-B	CB2741	3
2,5,16,37	Comp, $10 \text{ M}\Omega \pm 10\%$, $\frac{1}{4} \text{ W}$	RC104-610	A-B	CB1061	4
3,12,26,54	Comp, 100 kΩ ±10%, ¼ W	RC104-410	A-B	CB1041	4
4*,18*	Comp, 5.6 MΩ ±10%, ¼ W	RC104-556	A-B	CB5651	2
6*,21*	Comp, 4.7 MΩ ±10%, ½ W	RC104-547	A-B	CB4751	2
7 * ,34,35	Comp, 1 MΩ ±10%, ½ W	RC104-510	A-B	CB1051	3
8,60	Met flm, 178 k Ω ±1%, 1/8 W	RF214-178	CGW	RN55D	2
9,10	Met flm, 340 k Ω ±1%, 1/8 W	RF214-340	CGW	RN55D	2
11,13,25,27, 57,58,59	Comp, 10 kΩ ±10%, ¼ W	RC104-310	A-B	CB1031	7
57,50,59	i				
				4	

	MODULATION BOARD	una una	(310-		,
REFERENCE	DECORIDEION	WAVETEK	MAN	UFACTURER	Т
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Q
			-		T
" <u>R</u> "	RESISTORS - Cont'd	D0104 //7	A 70	CD / 7 / 1	2
14,28	Comp, 470 k Ω ±10%, $\frac{1}{4}$ W	RC104-447			
15*	Comp, 390 k Ω ±10%, $\frac{1}{4}$ W	RC104-439	A-B		1
19,20*,53	Comp, 22 M Ω ±10%, $\frac{1}{4}$ W	RC104-622	A-B		3
22	Met flm, 464 k Ω ±1%, 1/8 W	RF214-464			1
23,24	Met flm, 845 k Ω ±1%, 1/8 W	RF214-845	CGW		2
29	Comp, 7.5 k Ω ±5%, $\frac{1}{4}$ W	RC103-275	A-B		1 1
31	Met flm, 4.87 k Ω ±1%, 1/8 W	RF212-487	CGW		3
32,42,47	Var cermet, 1 kΩ	RP129-210	CTS		ľ
33	Met flm, 12.1 k Ω ±1%, 1/8 W	RF213-121	CGW		1
36	Var cermet, $20 \text{ k}\Omega$	RP129-320	CTS		1
38	Comp, $47 \text{ k}\Omega \pm 10\%$, $\frac{1}{4} \text{ W}$	RC104-347	A-B		1
39	Comp, $18 \text{ k}\Omega \pm 10\%$, $\frac{1}{4} \text{ W}$	RC104-318	A-B		1
40*	Comp, 620 k Ω ±10%, $\frac{1}{4}$ W	RC104-462	A-B		,
41	Met flm, 2.74 k Ω ±1%, 1/8 W	RF212-274	CGW		1
43	Met flm, 5.11 k Ω ±1%, 1/8 W	RF212-511	CGW		1
44	Var comp, $10 \text{ k}\Omega$	RP137-310	W-I		1
45	Comp, 33 Ω ±10%, $\frac{1}{4}$ W	RC104-033	A-B		1
46	Met flm, 16.5 k Ω ±1%, 1/8 W	RF213-165	CGW		1
48	Met flm, 1.5 k Ω ±1%, 1/8 W	RF212-150	CGW		1
49	Comp, 1 kΩ ±10%, ¼ W	RC104-210	A-B		1
50	Comp, 200 Ω ±5%, ¼ W	RC103-120	A-B		1
51	Comp, 4.7 kΩ ±10%, ¼ W	RC104-247	A-B		1
52	Comp, 330 Ω ±10%, $\frac{1}{4}$ W	RC104-133	A-B	i	1
55	Comp, 47 MΩ ±10%, ¼ W	RC104-647	A-B		1
56	Comp, 620 Ω ±5%, ¼ W	RC103-162	A-B		1
61	Met flm, 44.2 k Ω ±1%	RF213-442	CGW		1
62	Var comp, 10 k Ω , w/SPDT switch	RP150-310	A-B	Í	1
				R103U(1001)	
"S "	SWITCHES				
1,2	Lever, 4 position, 2 pole	SL000-003	S-G	42125	2
3	Part of R62				-
See	Lever, 6 position, w/stop (White Dial)	SL000-002	CHE		1
Model	Lever, 10 position, (White Dial)	SL001-002	CHE		2
3001	Lever, 10 position w/decimal point	SL002-002	CHE	L20-37AD	1
Wiring	(Black Dial)				
Diagram	Lever, 10 position std. (Black Dial)	SL003-002	CHE	L20-02A	2
	0016 0 13 1 11 6 33 1	- free C21C	ļ		
	For assy C316-3 delete the following item	s trom C316-	۷.		
CR8	Red LED with mounting Kit	DL000-001	NAT	NSL5046	1
Q4	NPN, Si	QA038-541	G-E	2N3854A	1
Q5	PNP, Si	QB000-009	MOT	MPS3702	1
R57,58,59	Comp, 10 k Ω +10%, $\frac{1}{4}$ W	RC104-310	A-B	CB1031	3
2.57,50,55					
			L		

REV F

		DPS	Z - 1		
REFERENCE	DESCRIPTION	WAVETEK	MAN	UFACTURER	T
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	ď
	DADEG MOUNTED ON D. C. CADD. CO.C.	-		TOMBETT	1
	PARTS MOUNTED ON P.C. CARD C352-				
''C ''	CAPACITORS				1
1,10	Electrolytic, 1500 µF 50 V	CE102-215	C-D	WBR1500-50	2
2,5,7,8	Electrolytic, 100 µF 25 V	CE105-110	SPR	TE-1211	4
3	Ceramic Disc, .005 µF ±20% 100 V	CD103-250	SPR	TG-D50	1
4,12	Ceramic Disc. 100 pF ±20% 1 kV	CD102-110	SPR	5GA-T10	2
6	Tantalum, 10 µF <u>+</u> 20%, 25 V	CE120-010	SPR	162D106X0-	1
				025DD0	
9	Electrolytic, 10,000 μF +75%-10%, 16 V	CD122-310	SPR	D76381	1
11	Electrolytic, 10 µF 25 V	CD105-010	SPR	TE-1204	1
13	Ceramic Disc, 120 µF +20%, 1 kV	CD102-112	SPR	5GA-T12	1
"CR "					-
CK	DIODES				
1,2,3,4,5,6		DR000-008	I	1N5059	6
1 '	Zener, 4.7 V	DB000-010	MOT	1N4732A	
8,10,11,12, 13,15,16,	Silicon, Junction 100 PIV	DR000-001	DIO	1N4004	10
17,18,19					
9	Zener, 12 V	DB000-003	C-L	HW12B	,
14	Hot Carrier	DG000-009	H-P	5082-2835	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
		10000 007	11 1	3002-2033	†
"F "	FUSES				
1	Fuse, 2 A, Slo-blow	MF000-002	BUS	MDL2	1
"IC "	INTEGRATED CIRCUITS				
1	Voltage Regulator, 10-pin TO-5	IC000-001	FCD	U5R7723393	1
2	Dual Operational Amplifier, 8 pin DIP	IC000-005	мот	MC1458P1	1
"P "					ĺ
	CONNECTORS (PLUGS)				.
$\begin{bmatrix} 1 \\ 2,3 \end{bmatrix}$	6 pin male	MC000-075	MOL	09-65-1061	1
2,3	9 pin male	MC000-071	MOL	09-65-1091	2
''Q ''	TRANSISTORS				
1,4,5,8,9	NPN, Silicon	QA038-541	G-E	2N3854A	5
2,6	PNP, Silicon	QA036-440	FCD	2N3644	2
3	PNP, Silicon	QB000-009	MOT	MPS3702	1
7	PNP, Silicon	QB000-031	RCA	40537	1
					-
"R "	RESISTORS		}		1
	<u> </u>		- 1	i	2
				ſ	1
4*					1
	<u> </u>		- 1	1	1
					1
	· · · · · · · · · · · · · · · · · · ·		I .	1	2
1)			1
l l			I	1	1
-					_
]	1		

REV F

REFERENCE	DECODIDETON	WAVETEK	MAN	UFACTURER	Т
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	a
"R "	RESISTORS (Cont'd)				
12	Composition, 3.3 Kilohm ±10% ¼ W	RC104-233	А-В	CB3321	1
13	Composition, 27 Kilohm ±10% ¼ W	RC104-327	A-B	CB2731	ī
14	Metal Film, 10 Kilohm ±1%	RF213-100	CGW	RN55D	1
1	Į	RF213-100	CGW	RN55D	2
15,28	Metal Film, 1 Kilohm ±1%		1	K-C ¹ 4	6
16,17,18,33, 34,35		RD01R-050	KID	·	
19	Composition, 220 ohm ±10% ¼ W	RC104-122	A-B	CB2211	1
20,21	Metal Film, 10 Kilohm $\pm 1\%$ matched to $\pm .1\%$		W-I	RX000-003	1
22,27,30	Composition, 1 Kilohm ±10% ¼ W	RC104-210	A-B	CB1021	3
23	Metal Film, 11.3 Kilohm ±1%	RF213-113	CGW	RN60D	1
24	Metal Film, 8.06 Kilohm ±1%	RF212-806	CGW	RN55D	1
25	Wire Wound, 41 Turns of 28 gage wire		İ		
	.2" dia	RX000-009	W-I	RX000-009	1
29	Metal Film, 16.5 Kilohm ±1%	RF213-165	CGW	RN55D	1
31	Composition, 2.7 Kilohm ±10% ½ W	RC106-227	A-B	EB2721	1
32	Composition, 470 ohm ±10% ¼ W	RC104-147	А-В	CB4711	1
32	Composition, 470 on 110% 4 "	110101 177			
	For C352-1 ADD the following to above ass	 emb1v			
			 		
R 8	Composition, 4.7 Kilohm, ±10% ¼ W	RC104-247	А-В	CB4721	1
	·				
	PARTS MOUNTED ON CHASSIS				
"F 100"	FUSES				
1	Fuse, 1 amp 115 volt	MF000-010	1	MDL1	-
	Fuse, .5 amp 230 volt	MF000-007	BUS	MDV ¹ 2	-
"J 100"	CONNECTORS (JACKS)				
1 1 100	6 pin, female	MC000-076	MOL	09-50-3061	_
-	9 pin, female	MC000-067	MOL	09-50-3091	_
2	9 pin, lemale	11C000-007	HOL	0, 50 30,1	
" <u>P 100</u> "	CONNECTOR (PLUG)			_	
1	AC Plug/Cord Assembly	WL002-088	BEL	17237	-
	TD ANC T CTADC				
	TRANSISTORS	04060 000	RCA	2N6099	2
$\begin{vmatrix} 1,2 \end{vmatrix}$	NPN, Silicon	QA060-990	1		1
3	NPN, Silicon	QA052-940	RCA	2N5294	1
l l			1		

DPS2 DPS2-1

REV F

REFERENCE	DESCRIPTION	WAVETEK		UFACTURER	T
SYMBOL		PART NO.	CODE	NUMBER	G
" <u>S 100</u> " 1 2	Parts Mounted on Chassis cont'd SWITCHES Power Switch, SPST Switch, DPDT, Slide	ST001-007 SS000-003	W-I S-I	ST001-007 46256LFE	-
'' <u>T 100</u> ''	TRANSFORMER Transformer, w/cover	TT000-025	W-I	TT000-025	_
	MISCELLANEOUS Bushing Strain Relief Fuse Holder Transistor Mounting Insulator Shoulder Washer, Nylon #4	HB104-002 MF000-001 HQ101-003 HW110-400	HEY BUS W-I RCA	SR5P-4 HMM HQ101-003 DF137A	- - 3 3

REFERENCE	- TOOD IDTION	WAVETEK	MAN	UFACTURER	Т
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Ω
"C"" 1,2,3 4,5 6,7 "CR"	CAPACITORS Ceramic Feedthru, 120 pF ±10% 500 V Ceramic Disc, .05 µF +80 -20% 100 V Ceramic Feedthru, 1000 pF ±20% 500 v DIODES	CF102-112 CD103-350 CF112-210	A-B SPR A-B	FA5C TG-S50 FA5C 1N4004	3 2 2 8
1,2,3,4,5,6, .7,8	Silicon, Junction 100 FIV 750 mA INTEGRATED CIRCUITS	DR000-001	111	1N4004	O
1,2	Dual Operational Amplifier, 8 pin, DIP INDUCTORS	IC000-005	MOT	MC1458PI	2
1,2	10 Turn Toroid TRANSISTORS	LA006-010	W-I	LA006-010	2
"Q" " 1 2 "	PNP, Silicon NPN, Silicon	QA042-500 QA050-880	FCD MOT	2N4250 2N5088	1 1
"R " 1,39 2,38 3,15,26,32 4,40 5 6,11,12,25 7,10,13,24,	RESISTORS Fixed Metal Film, 56.2 Kilohm ±1% Variable Cermet, 20 Kilohm Fixed Metal Film, 100 Kilohm ±1% Fixed Metal Film, 4.02 Kilohm ±1% Fixed Comp., 1 Kilohm ±10% ¼ W Fixed Comp., 330 Kilohm ±10% ¼ W Variable Cermet, 100 Kilohm	RF213-562 RP131-320 RF214-100 RF212-402 RC104-210 RC104-433 RP131-410	CGW CTS CGW CGW A-B A-B CTS	RN55D 360T203B RN55D RN55D CB1021 CB3341 360T104B	2 2 4 2 1 4 7
30,34,37 8,18,23,31,	Fixed Metal Film, l Kilohm ±1%	RF212-100	CGW	RN55D	5
33 9 14 16 17 19 20 21 22,28 27 29,35 36	Fixed Metal Film, 3.01 Kilohm ±1% Fixed Metal Film, 5.11 Kilohm ±1% Fixed Comp., 910 Kilohm ±5% ¼ W Fixed Comp., 100 Kilohm ±10% ¼ W Fixed Metal Film, 16.5 Kilohm ±1% Fixed Metal Film, 40.2 Kilohm ±1% Fixed Comp., 270 Kilohm ±10% ¼ W Variable Cermet, 20 Kilohm Fixed Comp., 75 Kilohm ±5% ¼ W Fixed Comp., 220 Kilohm ±10% ¼ W Fixed Comp., 120 Kilohm ±10% ¼ W Fixed Comp., 120 Kilohm ±10% ¼ W	RF212-301 RF212-511 RC103-491 RC104-410 RF213-165 RF213-402 RC104-427 RP130-320 RC103-375 RC104-422 RC104-412	CGW CGW A-B CGW CGW A-B HEL A-B A-B	RN55D RN55D CB9145 CB1041 RN55D RN55D CB2741 89PR20K CB7535 CB2241 CB1241	1 1 1 1 1 2 1 2 1

PARTS LIST SWEEP OSCILLATOR

MODULE M9W-1 REV F

	TARTO LIGI	INIODO		REV	F
REFERENCE SYMBOL	DESCRIPTION	WAVETEK	-	NUFACTURER	T
L		PART NO.	CODE	NUMBER	Q
"C" 1,4,22,23 2 3 5 6,7,8,9,24, 38,40,41,	•	CF102-R68 CF101-147 CF102-112 CG101-220 CE113-447	A-B A-B A-B Q-C TRW	FA5C FA5C FA5C QC2.0 Type 935	4 1 1 1 9
10,11,12,13 20,21,26, 28,36,43	*	CF104-110	AER	EF4	10
14,15,16,17 32,33,34	, Composition, 10 pF ±10% 500 V	CG101-310	Q-C	QC10	7
18,35 19 25 27 29 30 31 37,39 44 "IC " 1,2,3,4,9 5,7,10 6,8,11 "IC " 1,2,3,4 "IL " 1,2,3,4	Ceramic Disc, 120 pF ±20% 1 kV Ceramic Disc, .02 µF ±20% 100 V Ceramic Feedthru, 500 pF ±20% 250 V Composition, 1 pF ±10% 500 V Composition, .75 ±10% 500 V Ceramic Chip, 1 pF ±.25 pF 100 V Composition, 3 pF ±10% 500 V Ceramic Feedthru, 1000 pF GMV 500 V Ceramic Feedthru, 1000 pF GMV 500 V Ceramic disc, 100 pF ±20%, 1 kV DIODES Varactor Silicon, PIN Silicon, Point Contact INTEGRATED CIRCUITS Operational Amplifier, 8 pin, T0-5 CONNECTORS (JACKS) Jack, 50 ohm, subminiature	CD102-112 CD103-320 CF104-150 CG101-210 CG101-175 CC101-R10 CG101-230 CF112-210 CD102-110 DC000-008 DP000-040 DG100-821 IC000-004	SPR SPR AER Q-C Q-C VAR Q-C A-B SPR W-I M-A G-L	QC3.0 FA5C 5GA-T10 DC000-008	2 1 1 1 1 1 2 1 5 3 3 4
1,2,21,22 3,4,7,8,11, 12,14,15, 16,17,20	INDUCTORS 10 Turn Toroid Fixed,	LA006-010 Not assign	W-I W-I	LA006-010	4 11
5,9,10,13, 18,19	Fixed, .22 μH	LA005-R02	ASE	08NR47K	6
6 23 "Q" 1 2 3,4,6,7	Fixed, .22 µH 4 Turn Toroid TRANSISTORS N-channel, JFET NPN Silicon, Wideband Amp NPN, Silicon NPN, Silicon	LA008-R02 LA006-004 QA054-580 QB000-013 QA050-530 QA051-090	SYS W-I MOT APX APX RCA	506 LA006-004 5458 A430 2N5053 2N5109	1 1 1 1 4 1
"R " 1,14 2,38 3	RESISTORS Composition, 12 Kilohm ±10% ¼ W Variable, 5 Kilohm Composition, 100 ohm ±10% ¼ W	RC104-312 RP130-250 RC104-110	A-B BEK A-B	CB1231 89PR5K CB1011	2 2 1

MODULE M9W REV F

REFERENCE	DECORIDETION	WAVETEK	MAN	UFACTURER	Т
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	a
" <u>R</u> ", 4,27,29,42,	RESISTORS (Cont'd) Composition, 2.2 Kilohm ±10% ¼ W	RC104-222	А-В	CB2221	5
60	Composition, 330 ohm ±10% ¼ W	RC104-133	A-B	CB3311	1
6	Composition, 47 Kilohm ±10% ¼ W	RC104-347	А-В	CB4731	1
7	Composition, 10 Megohm ±10% ¼ W	RC104-510	А-В	CB1061	1
8	Composition, 33 Kilohm ±10% ¼ W	RC104-333	A-B	CB3331	1
9	Composition, 10 ohm ±10% ¼ W	RC104-010	А-В	CB1001	1
10	Composition, 680 ohm ±10% ¼ W	RC104-168	A-B	CB6811	1
11,15	Composition, 8.2 Kilohm ±10% ¼ W	RC104-282	A-B	CB8221	2
12,13	Composition, 1 Kilohm ±10% ¼ W	RC104-210	А-В	CB1021	2
16,22,28,32, 33,34,50,	Composition, 10 Kilohm ±10% ¼ W	RC104-310	A-B	CB1031	10
54,59,61 17,20,23,37, 39,48,51, 55	Composition, 4.7 Kilohm ±10% ¼ W	RC104-247	А-В	CB4721	8
1	Composition, 560 ohm ±10% ⅓ W	RC104-156	A-B	CB5611	4
18,24,52,56 19,21,49,53	Composition, 470 ohm ±10% ¼ W	RC104-147	A-B	CB4711	4
25,46	Variable, 20 Kilohm	RP130-320	BEK	89PR20K	2
26,31	Composition, 470 Kilohm ±10% ¼ W	RC104-447	A-B	CB4741	2
30,57	Variable, 20 Kilohm	RP129-320	CTS	360S203B	2
	Composition, 47 ohm ±5% ½ W	RC105-047	A-B	EB4705	2
35,62	Composition, 47 ohm ±10% ¼ W	RC104-047	A-B	CB4701	2
36,63 40	Composition, 51 Kilohm ±5% ¼ W	RC103-351	A-B	CB5135	1
	Composition, 100 Kilohm ±10% ¼ W	RC104-410	A-B	CB1041	2
41,58	Composition, 5.6 Kilohm ±10% ¼ W	RC104-256	А-В	CB5621	1
43	Composition, 150 ohm ±10% ½ W	RC106-115	А-В	EB1511	1
44	Composition, 3.9 Kilohm ±10% ¼ W	RC104-239	A-B	CB3921	1
45	Composition, 1.2 Kilohm ±10% 4 W	RC104-212	A-B	CB1221	1
47 64	Composition, 270 ohm ±10% ¼ W	RC104-127	А-В	CB2711	1
65	Comp, 1.2 Kilohm +10% (A-B only) 1/4 W	RC104-212	A-B	CB1221	' 1 '
66	Comp, 6.2 Kilohm +10% (A-B only) ¼ W	RC104-262	A-B	CB6221	1
"C 100" 1	CAPACITORS Composition, 2.4 pF +10% 500 V	CG101-224	Q-C	QC2.4	-
"CR 100"	DIODES	DG000-009	H-P	5082-283 5	_
1,2,3,4	Hot Carrier	DG000-007		3002 203 3	
"T 100"	TRANSFORMERS	mp.co.i coo	1.7 -	TP 001 002	
1	RF Transformer	TR001-003	W-I	TR001-003	-
2	RF Transformer	TR002-001	W-I	TR002-001	
	PRE-AMP ASSEMBLY			<u></u>	T
" <u>C 200</u> "	CAPACITORS	CE112 //7	TRW	Type 935	_
1,5	Tantalum, .47 μF 50 V	CE113-447	C-I		_
2	Tantalum, 1 µF 25 V	CE120-001	AER	EF4	_
3,4	Ceramic Feedthru, 500 pF	CF104-150	Q-C	QC2.0	_
6	Composition, 2 pF ±10% 500 V	CG101-220	γ-υ	Q02.0	
				<u> </u>	<u> </u>

			.,		. —-
REFERENCE		WAVETEK	MAN	UFACTURER	T
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	ά
OT WIDOL			CODE	NONDEN	
	Pre Amp Assembly cont'd				
"CR 200"	DIODES				
1	Zener, 6.8 V, 1 W, 10%	DB000-001	C-L	ZD6.8A	-
" <u>J 200</u> "	CONNECTORS (JACKS)				
1	Jack, 50 ohm, subminiature	JF000-005	APL	27–9	-
'' <u>L 200</u> ''	INDUCTORS	37	77 T		
1,3	Fixed	Not assign		08NR47K	_
2	Fixed, .22 μH	LA005-R02	ASE	LA006-010	-
4	10 Turn Toroid	LA006-010	W-I	LA006-010	-
110 20011	TTD ANG TOTODO				
" <u>Q 200</u> "	TRANSISTORS NPN, Silicon	QA050-530	AMP	2N5053	_
1,2	NPN, Silicon	QA051-790	RCA	2N5179	_
	RESISTORS	QAOSI-790	KCA	ZNJITJ	
'' <u>R 200</u> '' 1	Composition, 100 ohm ±10% ¼ W	RC104-110	А-В	CB1011	
2	Composition, 470 ohm ±10% ¼ W	RC104-110	A-B	CB4711	_
3	Composition, 330 ohm ±10% ¼ W	RC104-133	A-B	CB3311	_
4	Composition, 4.7 Kilohm ±10% ¼ W	RC104-247	A-B	CB4721	_
5,6	Composition, 47 ohm ±10% ¼ W	RC104-047	A-B	CB4701	_
7	Composition, 270 ohm ±10% ¼ W	RC104-127	А-В	CB2711	_
,					
	PARTS ADDED FOR M9W-1				
''C ''	CAPACITORS				
43	Cer Miniature, .01 µF ±20%, 50 V	CD113-310	C-L	CY15C103M	1
3	oer miniacure, for ar mon, so				
'' <u>J</u> ''	CONNECTORS (JACKS)				
3	Jack, 50 ohm, subminiature	JF000-005	APL	27-9	1
11 _D 11	prorong.				
'' <u>R</u> ''	RESISTORS	RC104-118	A-B	CB1811	1
65	Comp, 180 ohm ±10%, ½ W	KC104-116	A-B	CBIOII	+
					1
	·				

		·			_
REFERENCE	DESCRIPTION	WAVETEK	MAN	IUFACTURER	Т
SYMBOL	2200111111011	PART NO.	CODE	NUMBER	Ω
" <u>C</u> "	Following parts are for M10W; see sheet 2 CAPACITORS				
1 2*,8 3,4,6 5,13,14,29 7 9 10,11,30 12,17,19,21 15,24,25,32 16 18,20,27,31	Ceramic Feedthru, 6.8 pF $\pm 10\%$, 500 V Ceramic Disc, 120 pF $\pm 20\%$, 1 kV Ceramic Disc, 200 pF $\pm 20\%$, 1 kV Electrolytic, .47 µF 50 V Ceramic Disc, 47 pF $\pm 5\%$ 1 kV Ceramic Disc, .005 µF $\pm 20\%$ 100 V Ceramic Feedthru, 500 pF $\pm 20\%$ 250 V Ceramic Disc, .01 µF $\pm 20\%$ 100 V Electrolytic, 10 µF 25 V Ceramic Disc, 15 pF $\pm 5\%$ 1 kV Ceramic Feedthru, 1000 pF $\pm 20\%$ 500 V	CF102-R68 CD102-112 CD102-120 CE113-447 CD104-047 CD103-250 CF104-150 CD103-310 CE105-010 CD101-015 CF112-210	A-B SPR SPR TRW SPR SPR AER SPR SPR SPR SPR	FA5C 5GA-T12 5GA-T20 935 10TCU-Q47 TG-D50 EF4 TG-S10 TE1204 10TCC-Q15 FA5C	1 2 3 4 1 1 3 4 4 1 4
22 23 28 33 34	Ceramic Disc, 4.7 pF ±5% 1 kV Ceramic Disc, 10 pF ±5% 1 kV Ceramic Feedthru, 100 pF ±20% 250 V Ceramic Disc, 470 pF ±20% 1 kV Comp, .10 pF ±10%, 500 V	CD101-R47 CD101-010 CF104-110 CD102-147 CG101-110	SPR SPR AER SPR Q-C	10TCC-V47 10TCC-Q10 EF4 5GA-T47 QC.1	1 1 1 1
"CR " 1,3,4 2,12,13 5,6,7 8,9 10,11	DIODES Silicon, PIN Silicon, Hot Carrier Silicon Junction, 100 PIV 750 mA Varactor Varactor	DP000-050 DG000-007 DR000-001 DC000-008 DC000-005	W-I W-I ITT W-I W-I	DP000-050 DG000-007 1N4002 DC000-008 DC000-005	3 3 3 2 2
" <u>J</u> "	CONNECTORS (JACKS) Jack, receptacle, 50 ohm subminiature	JF000-005	APL	27-9	2
"L" 1,2,6 3,4,8,9,10, 11 5,7,12,13,15 14	INDUCTORS Fixed Fixed Fixed Fixed, 10 mH	Not assign LA006-010 LA006-004 LA004-310	W-I	LA006-010 LA006-004 15S103K	- 6 5 1
"Q" 1 2,3 4,5 6,10,11 7 8,9	TRANSISTORS NPN, Silicon, Dual NPN, Silicon PNP, Silicon NPN, Silicon NPN, Silicon NPN, Silicon NPN, Silicon	QB000-010 QA050-530 QB000-009 QB000-018 QB000-013 QA038-541	APX MOT SSS AER	TD101 2N5053 MPS3702 SD1006 A430 2N3854A	1 2 2 3 1 2

			-, -		
REFERENCE	DESCRIPTION	WAVETEK	MAN	IUFACTURER	T
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Q
"R " 1,8,45,51 2,6,12,47 3,20,37 4,19 5,10,38,40 7 9 11,21 13 14,26,31,36,41 15,53 16 17 18,24,25 22 23,33 27 28,32,35,52* 29 30 34 39 42 43*,50 44* 46 48	Composition, 100 ohm ±10% ¼ W Composition, 820 ohm ±10% ¼ W Composition, 56 ohm ±10% ¼ W Composition, 220 ohm ±10% ¼ W Composition, 560 ohm ±10% ¼ W Composition, 27 ohm ±10% ¼ W Composition, 470 ohm ±5% ¼ W Composition, 82 ohm ±5% ¼ W Composition, 360 ohm ±5% ¼ W Composition, 1.5 Kilohm ±5% ¼ W Composition, 22 ohm ±10% ¼ W Composition, 7.5 Kilohm ±5% ¼ W Composition, 150 ohm ±5% 1 W Composition, 33 Kilohm ±10% ¼ W Composition, 39 Kilohm ±10% ¼ W Composition, 100 ohm ±5% 1 W Composition, 100 ohm ±5% 1 W Composition, 620 ohm, ±5%, ¼ W	RC104-047 RC104-210 RC104-347 RC104-456 RC104-310 RC104-133 RC104-212 RC104-247 RC104-115 RC103-010 RC104-110 RC104-182 RC104-056 RC104-056 RC104-156 RC104-027 RC103-147 RC103-082 RC105-136 RC103-215 RC104-022 RC104-022 RC103-275 RC104-022 RC104-333 RC104-333 RC104-339 RC107-110 RC103-162	A-B A-B A-B A-B A-B A-B A-B A-B A-B A-B	CB4701 CB1021 CB4731 CB5641 CB1031 CB3311 CB1221 CB4721 CB1511 CB1005 CB1011 CB8211 CB5601 CB2211 CB5611 CB2701 CB4715 CB8205 EB3615 CB1525 CB2201 CB7525 GB1515 CB3331 CB3931 GB1015 CB6215	Q 44324112155 211312111111111111111111111111111
49 * 54	Composition, 18 Kilohm $\pm 10\%$, $\frac{1}{4}$ W Composition, 15 Kilohm $\pm 10\%$, $\frac{1}{4}$ W	RC104-318 RC104-315	A-B A-B	CB1831 CB1531	1
	For module MIOU I ADD the fellowing ports	to M10W			
	For module M10W-1 ADD the following parts	to MIUW			
C35 C36 C37	Ceramic disc, .05 μ F +20%, 100V Ceramic mono, .01 μ F +20%, 50 V Ta, 10 μ F +20%, 20V	CD103-350 CD113-310 CE120-010	SPR C-L SPR	TG-550 CY15C103M 162D106X0- K25A2	1 1
C38 CR14 J3 L16 L17 R55 R56	Cer ft, 1000 pF GMV, 500 V Silicon, PIN Jack, receptacle. 50 ohm subminiature 4 Turn Toroid 10 Turn Toroid Composition, 4.3 k Ω +5%, $\frac{1}{4}$ W Composition, 15 k Ω +10%, $\frac{1}{4}$ W	CF112-210 DP000-040 JF000-005 LA006-004 LA006-010 RC103-243 RC104-315	APL W-I W-I A-B	FA5C MA47980 27-9 LA006-004 LA006-010 CB4325 CB1531	1 1 1 1 1 1

REFERENCE	DECORPTION	WAVETEK	MAN	UFACTURER	Т
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Q
"C" " 1 thru 13 14,15	CAPACITORS Ceramic Feedthru, 1000 pF GMV 500 V Ceramic Feedthru, 6.8 pF ±10% 500 V	CF112-210 CF102-R68	A-B A-B	FA5C FA5C	13 2
" <u>IC "</u>	INTEGRATED CIRCUITS Dual Operational Amplifier, 8 pin	IC000-005	мот	MC1458PI	1
"Q" 1 2 thru 12, 24,25	TRANSISTORS NPN, Silicon NPN, Silicon	QA053-060 QA038-541	G-E G-E	2N5306 2N3854A	1 13
13 thru 23, 26	PNP, Silicon	QB000-009	MOT	MPS3702	12
"R" " 1 2,40 3 4,8,12 5,6,7,9,10, 11,13,14,	RESISTORS Fixed Comp., 15 Kilohm ±5% ¼ W Fixed Comp., 3.3 Kilohm ±5% ¼ W Fixed Comp., 220 ohm ±10% ¼ W Fixed Comp., 470 ohm ±10% ¼ W Fixed Comp., 1 Kilohm ±10% ¼ W	RC103-315 RC103-233 RC104-122 RC104-147 RC104-210	A-B A-B A-B A-B	CB1535 CB3325 CB2211 CB4711 CB1021	1 2 1 3 9
15 16 thru 26 27 thru 37,	Fixed Comp., 4.7 Kilohm ±10% ¼ W Fixed Comp., 22 Kilohm ±10% ¼ W	RC104-247 RC104-322	A-B A-B	CB4721 CB2231	11 11
38, 39 41 42 43 44 45 46 47 48 49 50,51	Fixed Comp., 270 Kilohm ±10% ½ W Fixed Comp., 20 Kilohm ±10% ½ W Fixed Metal Film, 17.8 Kilohm ±1% Fixed Metal Film, 4.02 Kilohm ±1% Fixed Metal Film, 2.74 Kilohm ±1% Fixed Metal Film, 8.06 Kilohm ±1% Fixed Metal Film, 16.9 Kilohm ±1% Fixed Metal Film, 34.0 Kilohm ±1% Fixed Metal Film, 42.2 Kilohm ±1% Fixed Metal Film, 86.6 Kilohm ±1% Variable Cermet, 2 Kilohm	RC104-427 RC103-320 RF213-178 RF212-402 RF212-274 RF212-806 RF213-169 RF213-340 RF213-422 RF213-866 RP130-220	A-B CGW CGW CGW CGW CGW CGW CGW	CB2741 CB2031 RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D	2 1 1 1 1 1 1 1 1 1 2 3
52,53,54 55,62 56,61 57 58 59 60 63 64	Variable Cermet, 5 Kilohm Fixed Metal Film, 178 Kilohm ±1% Fixed Metal Film, 357 Kilohm ±1% Fixed Metal Film, 442 Kilohm ±1% Fixed Metal Film, 887 Kilohm ±1% Fixed Metal Film, 1.78 Megohm ±1% Fixed Metal Film, 3.57 Megohm ±1% Fixed Metal Film, 88.7 Kilohm ±1% Fixed Metal Film, 44.2 Kilohm ±1%	RP130-250 RF214-178 RF214-357 RF214-442 RF214-887 RF215-178 RF215-357 RF213-887 RF213-442	HEL CGW CGW CGW CGW CGW CGW CGW	RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D	2 2 1 1 1 1 1
65 66 67 68,69 70 71	Fixed Metal Film, 35.7 Kilohm ±1% Variable Cermet, 100 Kilohm Fixed Metal Film, 2.43 Megohm ±1% Fixed Metal Film, 2.43 Kilohm ±1% Fixed Metal Film, 8.25 Kilohm ±1% Variable Cermet, 20 Kilohm Fixed Comp., 330 Kilohm ±5% ½ W	RF213-357 RP130-410 RF215-243 RF212-243 RF212-825 RP130-320 RC103-433	HEL COR CGW CGW HEL A-B	89PR100K RN55D RN55D RN55D RN55D 89PR20K CB3345	1 1 2 1 1 1

PARTS LIST FM REFERENCE

MODULE M29-2 REV A

					TIZJ-Z NEV	21
	REFERENCE	DESCRIPTION	WAVETEK	MA	NUFACTURE	RT
	SYMBOL	D 2001111 TION	PART NO.	COL	DE NUMBER	à
	'' <u>C</u> ''	Following is parts list for M29-1; see sh	neet 2 for M	29 - 2 (differences	
	1,29,30 2 3,5,8,9,19, 24,25,26,27		CF102-R68 CD104-075 CD103-310	A-SPI	R 10TCU-Q75	3 1 9
	4,10 6 7	Ceramic Disc, 150 pF <u>+</u> 20% 1 kV Ceramic Disc, .003 µF <u>+</u> 20% 1 kV Ceramic Disc, 68 pF N750 <u>+</u> 5% 1 kV	CD102-115 CD102-230 CD104-068	SPI SPI SPI	R 5GA-D30	2 1 1
	11 12* 13	Ceramic Trimmer, 7 to 35 pF Duramica, 68 pF ±5% 500 V Duramica, 470 pF ±5% 500 V	CV101-035 CM101-068 CM101-147	STR ARC ARC	DM-15-680J	1
	15,18 16,17 20 21 23,28	Electrolytic, 10 uF 25 V Ceramic Feedthru, 1000 pF ±20% 500 V Ceramic Disc, .001 uF ±20% 1 kV Duramica, 100 pF ±5% 500 V Ceramic Disc, 20 pF NPO ±5% 1 kV	CE105-010 CF112-210 CD102-210 CM101-110 CD101-020	SPR A-B SPR A-E SPR	FA5C 5GA-010 DM-15-101J	2 2 1 1 2
	"CR " 1,10,11 2,7,8,9 3,4,5,6	DIODES Silicon junction Silicon epitaxial planar Silicon epitaxial planar	DR000-001 DG000-011 DG000-010	ITT FCD FCD		3 4 4
	" <u>IC</u> " 1,2	INTEGRATED CIRCUITS Op Amp Dual Independent Differential AMP	IC000-008 IC000-010	NAT RCA	LM301AN CA3049T	2 1
	" <u>J</u> "	CONNECTORS Jack Receptacle, 50 ohm subminiature	JF000-005	APL	27-9	1
1	" <u>L</u> "	INDUCTORS Fixed	LA006-010	W-I	LA006-010	2
1 2 3 4 5 6	5,7,10	TRANSISTORS PNP, Silicon, Dual PNP, Silicon NPN, Silicon, Dual NPN, Silicon PNP, Silicon PNP, Silicon N-Channel JFET, Dual PNP, Silicon	QB000-011 QB000-009 QB000-010 QA038-541 QA051-390 QB000-026 QA036-400	SPR MOT SPR G-E NAT A-D	TD401 MPS3702 TD101 2N3854A 2N5139 AD3958 2N3640	1 1 1 1 3 1 2
1			RP130-220 RF212-511	BEK CGW	89PR2K RN55D	1 5
3	,5,10,16,	Fixed Metal Film, 1.0 Kilohm ±1%	RF212-100	CGW	RN55D	7
4	19,22,25	Edward War 1 Did a constant	RF212-200	CGW	RN55D	4

PARTS LIST FM REFERENCE

MODULE M29-2

rev A

REFERENCE	DESCRIPTION	WAVETEK	MAN	UFACTURER	'
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Ω
"R " 6,12,15 8,21 9,14,30,32, 33,44 13 18 20,23,58 26 28,39,41,42, 46 34 35,50 36,37,51 43,54 45 47,49 48 55	Fixed Metal Film, 845 ohm ±1% Fixed Metal Film, 1.1 Kilohm ±1% Fixed Metal Film, 1.5 Kilohm ±1% Fixed Metal Film, 15 Kilohm ±1% Fixed Metal Film, 174 ohm ±1% Fixed Metal Film, 357 ohm ±1% Fixed Metal Film, 2.1 Kilohm ±1% Fixed Metal Film, 2.49 Kilohm ±1%	RF214-110 RF211-249 RF211-499 RC104-415 RP130-320 RF212-402 RF21R-332 RF211-100 RF211-845 RF212-110 RF212-150 RF213-150 RF211-174 RF211-357 RF211-357 RF212-210 RF212-249	CGW CGW CGW CGW CGW CGW CGW CGW CGW CGW	RN55D RN55D RN55D CB1541 89PR2OK RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D RN55D	3 2 6 1 1 3 1 5 1 2 3 2 1 2 1
59 60	Fixed Metal Film, 1 Megohm ±1% Fixed Metal Film, 48.7 Kilohm ±1%	RF215-100 RF213-487	CGW CGW	RN55D RN55D	1 1
	For M29-2 ADD following parts to M29-1				
C31 R61	Ceramic Feedthru, 6.8 pF ±10%, 500 V Fixed Metal Film, 10.0 Kilohm ±1%	CF102-R68 RF213-100	A-B CGW	FA5C RN55D	1

		REFERENCE				<i>,</i> ,	
	REFERENC	DESCRIPTION	WAVETEK	MA	NUFACTUREF	7	-
	SYMBOL	DESCRIPTION	PART NO.	COD	E NUMBER		
		Following is a parts list for M30-1; see	Sheet 4 for	M30	-2 difference	 	ᅥ
	''C ''	CAPACITORS	ľ				
	1,2,3,18,5		CF112-210	А-В	FA5C	$ \epsilon $;
	4,5,6,7,8	Ta, 1.0 μF <u>+</u> 10%, 25 V	CE120-001	ACI	100DE105- K25A2	5	;
	9	Elect, 100 μF, +100%-10%, 12 V	CE119-110		ME4D100	1	.
	10 13	Elect, 100 µF, 6 V	CE118-110	i .	[1	.
İ	14	Cer disc, 47 pF +5%, 1 kV	CD101-047	SPR	10TCC-Q47	1	
	15	Small capacitance may be added in cali Cer disc, 470 pF +20%, 1 kV	CD102-147	SPR	TO A TO A TO	١,	
	16	Cer disc, 25 pF +5%, 1 kV	CD101-025	1	l .		
	17	Var Air, 1.4-9.2 pF	CV107-001	JON			
			00107 001	001	001	1	
	19,40,50	Cer disc, .005 μF +80%-20%, 100 V	CD103-250	SPR		3	
	20	Sil mica, 180 pF <u>+</u> 5%, 500 V	CM101-118	ARC	N Company of the Comp		- 1
	21	Cer ft, 500 pF <u>+</u> 20%, 250 V	CF104-150	AER	EF4	1	
	22	Cer disc, 20 pF \pm 5%, 1 kV	CD101-020	SPR	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		- 1
Ì	23	Cer disc, 100 pF +20%, 250 V	CF104-110	AER	I	1	
	24,25,28,40 45	O, Cer ft, 2200 pF GMV, 500 V	CF115-222	AER	4420	5	-
	26,34,36,39 42,47,57	Var, cer, 3.5-13 pF, disc	CV101-013	STR	7S-TRIKO- 02	7	
	27*	Cer disc, 4.7 pF +5%, 1 kV	CD101-R47	SPR		1	
1	29	Cer disc, 200 pF +20%, 1 kV	CD102-120	SPR	5GA-T20	1	1
	30	Cer disc, 15 pF $\pm 5\%$, 1 kV	CD101-015	SPR		1	
	31	Comp, 2.0 pF $\pm 10\sqrt{7}$, 500 V	CG101-220	Q-C	QC2.0	1	
1	32	Comp, 4.7 pF $\pm 10\%$, 500 V	CG102-247	Q-C	MC4.7	1	
	33,38	Comp, 1.1 pF $\pm 10\%$, 500 V	CG102-211	Q-C	MC1.1	2	
	35,37	Comp, .47 pF $\pm 10\%$, 500 V	CG102-147	Q-C	MC.47	2	
	41,46 43	Cer ft, 500 pF +20%, 250 V	CF104-150	AER		2	
l	44,49,51,52	Cer ft, 27 pF +5%, 500 V	CF114-027	AER		1	1
	48	Cer disc, $10 \text{ pF} \pm 5\%$, 1 kV Cer ft, $100 \text{ pF} \pm 20\%$, 250 V	CD101-010 CF104-110	SPR AER	10TCC-Q10 EF4	4	
	53,55	Var, cer, .5-3 pF	CV104-110		R-TRIKO-104	1 2	
	54	Comp, .1 pF +10%, 500 V	CG101-110	Q-C	QC.10	1	
	56	Comp, .75 pF +10%, 500 V	CG102-175	Q-C		1	
	59	Comp, 10 pF $\pm 10\%$, 500 V	CG101-310	Q-C	QC10	1	
	"CR "	DIODES					
	1,2,4	Si, Junction, 100 PIV	DR000-001	DIO	1N4004	3	
	3	Si, PIN	DP000-040	M-A	MA47047	1	
	5	Germanium, Point Contact	DG100-341	HIT	1N34AS	1	
	6,7	Step Recovery	DG000-012	H-P	5082-0180	2	
	8	Varactor	DC000-005	W-I	DC000-005	1	
				1	1		

MODULE M30-1 REV A

	REFERENCE				
REFERENCE		WAVETEK	MAN	JFACTURER	Т
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Q
OTWIDOL .					
" <u>IC "</u>	INTEGRATED CIRCUITS	IC000-011	FCD	μ Α 78M05UC	
1	Voltage Regulator, 5 V Operational Amplifier, 8 pin, DIP	IC000-011	SIG	N5741V	1
2	operational Ampiliter, o pin, bir	10000			
	(7) (7)				
" <u>J</u> "	CONNECTORS (JACKS)	JF000-005	APL	27-9	7
1,2,3,4,5,	Jack, 50 Ω , subminiature	01000 003	111 13	2, ,	'
0,7					
11.	TNINICTORC				
" <u>L</u> "	INDUCTORS 10 Turn Toroid	LA006-010	W-I	LA006-010	4
7	Fxd, .47 μ H, conformal coated	LA005-R04	ASE	08NR47K	1
8,9,16,17	4 Turn Toroid	LA006-004		LA006-004	4
10,11,21,23,	Fxd,	not assigned	W-I		-
24,25	m 1 00 W	LA005-R02	ASE	08NR22K	5
12,13,14,15,	Fxd, .22 μH , conformal coated	LA003-R02	AUL	001112210	
18	Fxd, .10 µH, conformal coated	LA005-R01	ASE	08NR10K	1
20	Fxd, 1 µH, conformal coated	LA005-R10	1	08N1ROK	1
26	Lug, #6	HG102-600	W-I	HG102-600	1
11Q 11	TRANSISTORS			0	
1,2,6,7,8	NPN, Si	QA050-530	AMP	2N5053	7
9,10	NDM C4	0A051-790	RCA	2N5179	1
3 4,5	NPN, Si NPN, Si	0A038-541	1 1	2N3854A	2
4,5	11119 52				
11 _D 11	DECT CHOIC				
'' <u>R</u> ''	RESISTORS Met flm, 5.11 k Ω +1%, 1/8 W	RF212-511	CGW	RN55D	1
5,50	Met flm, 10 k Ω +1 $\frac{1}{2}$, 1/8 W	RF213-100	CGW	RN55D	2
6,18,19	Met flm, 2 k Ω +1%, 1/8 W	RF212-200		RN55D	3
7,14,23,41	Comp, $100 \Omega + 10\%$, $\frac{1}{4} W$	RC104-110		CB1011	4
8,29	Comp, 2.2 k Ω +10%, $\frac{1}{4}$ W	RC104-222	1 1	CB2221	2
9,11,22	Comp, $1 \text{ k}\Omega + 1\overline{0}\%$, $\frac{1}{4} \text{ W}$	RC104-210	1 1	CB1021	3
10	Comp, $100 \text{ k}\Omega + 10\%$, $\frac{1}{4} \text{ W}$	RC104-410	1	CB1041 CB4721	1 1
12	Comp, $4.7 \text{ k}\Omega + 10\%$, $\frac{1}{4} \text{ W}$	RC104-247 RC104-447	1	CB4721 CB4741	1
13	Comp, $470 \text{ k}\Omega + 10\%$, $\frac{1}{4} \text{ W}$	RF213-402		RN55D	1
15	Met flm, $40.2 \text{ k}\Omega + 1\%$, $1/8 \text{ W}$ Met flm, $15 \text{ k}\Omega + 1\%$, $1/8 \text{ W}$	RF213-402	1	RN55D	1
16 17	Met fim, 13 k Ω ± 12 , 178 w Comp, 1.5 k Ω ± 5 %, $\frac{1}{4}$ W	RC103-215	1	CB1525	1
20	Comp, 1.8 k Ω $\pm 5\%$, $\frac{1}{4}$ W	RC103-218		CB1825	1
	<u> </u>				
				· · · · · · · · · · · · · · · · · · ·	

PARTS LIST

CRYSTAL REFERENCE

MODULE M30-1 REV A

	REFERENCE		_	M30-2 112 V	·
REFERENCE	DESCRIPTION	WAVETEK	MAN	UFACTURER	Т
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	امًا
"R" " 21 24 25,26 27 28 30,36,43 31,35,42 32,38,44,45 33,39,49 34,37 40 46,47 48 51 52	RESISTORS Comp, 220 Ω +10%, ½ W Comp, 10 Ω +5%, 1/8 W Comp, 100 Ω +5%, 1/8 W Comp, 47 k Ω +10%, ½ W Comp, 22 k Ω +10%, ½ W Comp, 33 k Ω +10%, ½ W Comp, 10 k Ω +10%, ½ W Comp, 10 k Ω +10%, ½ W Comp, 47 Ω +5%, 1/8 W Comp, 470 Ω +10%, ½ W Comp, 470 Ω +10%, ½ W Comp, 22 Ω +5%, 1/8 W Comp, 82 Ω +10%, ½ W Comp, 270 Ω +5%, 1/8 W Comp, 10 Ω +10%, ½ W Met flm, 34 k Ω +1%, 1/8 W Met flm, 13 k Ω +1%, 1/8 W	RC104-122 RC101-010 RC101-110 RC104-347 RC104-333 RC104-310 RC101-047 RC101-022 RC104-012 RC104-010 RF213-340 RF213-130	A-B A-B A-B A-B A-B A-B A-B	CB2211 BB1005 BB1015 CB4731 CB2231 CB3331	1 1 2 1 1 3 3 4 3 2 1 1 2 1 1
" <u>T</u> "	TRANSFORMERS RF Transformer CRYSTALS	TR004-001	W-I	TR004-001	1
1	X40W, 40.00000 MHz MISCELLANEOUS	XX000-040	W-I	XX000-040	1
	IC Socket, 8 pin, DIP	MC000-040	T-I	C930802	1
" <u>C 100</u> " 1,3,4,5,6,7	$\frac{\text{CAPACITORS}}{\text{Ta, 1.0 } \mu\text{F}} \pm 10\%, 25 \text{ V}$	CE120-001	ACI	100DE105-	6
2	Cer disc, .01 μF <u>+</u> 20%, 100 V	CD103-310	SPR	K25A2 TG-S10	1
"IC 100" 1 2 3,4,5	INTEGRATED CIRCUITS Flip-Flop, Dual D Type, Schottky Decade Counter, 14 pin, DIP Decade Counter, 14 pin, DIP	IC000-015 IC000-016 IC000-003	SIG	SN74S74N N8290A N8292A	1 1 3

	REPERENCE		115	30-2	,
REFERENCE	DECORIBETION	WAVETEK	MAN	UFACTURER	T
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Q
	DIVIDER SUB-ASSEMBLY (CONTINUED)				
" <u>L 100</u> " 1,3,4,5,6,7	INDUCTORS 10 Turn Toroid	LA006-010	W-I	LA006-010	6
2	4 Turn Toroid	LA006-004	W-I	LA006-004	1
"R 100"	RESISTORS				
1 1 100	Comp. 390 +10%, ¼ W	RC104-139	1	CB3911	1 1
2 3	Comp, 100 +10%, ½ W Comp, 1.8 k +10%, ½ W	RC104-110 RC104-218	A-B A-B	CB1011 CB1821	1
3	Comp, 1.0 k -10%, 4 "				
	MISCELLANEOUS IC Socket, 14 pin, DIP	MC000-073	T-I	C931402	5
	16 Socket, 14 pin, bir				
	For M30-2 change the M30-1 as follows				
C16	ADD Cer disc, 33 pF +5%, 1 kV	CD101-033	SPR	10TCC-Q33	1
	DELETE				
C16	Cer disc, 25 pF <u>+</u> 5%, 1 kV	CD101-025 CF112-210	SPR A-B	10TCC-Q25 FA5C	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
C57,58	Cer ft, 1000 pF GMV, 500 V	GF112-210		11130	-
C59	Comp, 10 pF ±10%, 500 V	CG101-310	Q-C W-I	QC10 DC000-005	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
CR8 L27	Varactor 10 Turn Toroid	DC000-005 LA006-010	W-I W-I	LA006-010	1
R50	Met flm, 10 k Ω +1%, 1/8 W	RF213-100	CGW	RN55D	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
R51 R52	Met flm, 34 k Ω +1%, 1/8 W Met flm, 13 k Ω +1%, 1/8 W	RF213-340 RF213-130	CGW CGW	RN55D RN55D	1
K)2	Het 11m, 15 km -1/6, 1/6				

REFERENCE SYMBOL						mor KEA	E	J
SYMBOL		1	DESCRIPTION	WAVETEK	MA	NUFACTURE	R -	_
"C " CAPACITORS Caramic Feedthru, 1000 pF ±20% 500 v CF112-210 A-B FA5C-1000 15		SYMBOL	DESCRIFTION	1	`			•
Caralic Disc, .05 \(\text{if} \) 1 thru 12, \(\frac{1}{14,19,20} \) 20 13,32 15					- 001	NOMBER		<u></u>
Caralic Disc, .05 \(\text{if} \) 1 thru 12, \(\frac{1}{14,19,20} \) 20 13,32 15			MATN P. C. ROADD (7261) DARMS					
1 thru 12,			TRAIN 1.0. BOARD (2201) PARIS					
1 thru 12,		"C "	CAPACITORS					
14,19,20		1 thru 12,		CF112-210	Δ_Ε	FA5C-1000	1,	_
15			, , , , , , , , , , , , , , , , , , , ,	01112 210	1 1	, FA3C-1000	1	ا د
15			Ceramic Disc, .05 μF ±20% 100 V	CD103-350	SPF	TG-S50	12	,
17,22				CE119-110				
18,21				CE118-110	ARC		,	- 1
Ceramic Feedthru, 6.8 pF ±10% 500 v CF102-R68 A-B FA5C 1 24,25 Ceramic Disc, .001 μF ±20% 1 kV CD102-210 SPR 56.26.70 C26,27 Ceramic Disc, .07 μF ±00% 1 kV CD102-210 SPR 56.26.70 C26,27 Ceramic Disc, .07 μF ±00% 1 kV CD102-210 SPR 56.26.70 C26,27 Ceramic Disc, .07 μF ±5% 1 kV CD101-010 SPR CD101-010 SPR CD101-010 CD102-210 CD101-010 CD102-210 CD101-010 CD102-210 CD101-010 CD102-210 CD101-010 CD102-210 CD101-010 CD102-210 CD101-020 CD101-	-				SPR	TG-S10		
24,25	ĺ	•		1	C-I	CCT025-105	2	
26,27			Ceramic Feedthru, 6.8 pF ±10% 500 V		1	1		- 1
28,33		•		I.	l l	1		
Ceramic Disc, 10 pF ±5% 1 kV CD101-010 SPR 107CC-010 1 107CC-010		-		1	į.		4	- 1
30			Ceramic Disc. 10 pF +5% 1 kV	i i		J 1		- 1
Duramica, .002 μF ±5% 500 V CM101-220 ARC DM19-202J 1 "CR	1	30			1		1	- 1
CR		31			1			- 1
1,2				011101 220	7110	D1117-2023	1	
3,4,5 Silicon Junction, 100 PIV DR000-001 ITT IN4004 3 1 1 1 1 1 1 1 1 1			DIODES					
Silicon Junction, 100 PIV DR000-001 TTT IN0004 3 1 1 1 1 1 1 1 1 1		-	Silicon Junction, "FCD" only	DR001-001	W-T	DR001-001	2	
Red LED with mounting kit DL000-001 FCD FLV102 1 DC000-007 1							$\frac{1}{3}$	1
"IC " INTEGRATED CIRCUITS 1,2,12 Hex Inverter 3,4,6 Decade Counter Decade Counter AND Gate, Triple 3-Input Series Production and Amplifier Doual Operational Amplifier Voltage regulator, 5 V "U " INDUCTORS 1 Turn Toroid Fixed, 2.2 µH ±10% 13 Turn G32 AWG) on 2.2 Megohm resistor Signature Signatu				1	FCD	· ·	- 1	
1,2,12		O	Varactor Diode	DC000-007	W-I	DC000-007	1	
1,2,12								
1,2,12		"IC "	INTEGRATED CIRCUITS					
3,4,6 Decade Counter Decade Counte		1,2,12		TC000-012	T T	CN7/O/N		
Decade Counter AND Gate, Triple 3-Input Flip-Flop, J-K with AND inputs Flip-Flop, J-K with AND inputs Phase-Frequency Detector Dual Operational Amplifier Voltage regulator, 5 V 1		3,4,6		1	I	1	1	
AND Gate, Triple 3-Input Flip-Flop, J-K with AND inputs Phase-Frequency Detector Dual Operational Amplifier Voltage regulator, 5 V CONNECTORS (JACKS) Jack Receptacle, 50 ohm Thru 16 Triple 3-Input Flip-Flop, J-K with AND inputs Phase-Frequency Detector Dual Operational Amplifier Voltage regulator, 5 V CONNECTORS (JACKS) Jack Receptacle, 50 ohm JF000-005 APL Z7-9 2 LA006-010 LA005-R22 Not assign LA006-010 LA005-R22 Not assign LA005-R02 N-Input SIG N74H11A 1 SN74H102N 1 INCOO-029 FCD MOT MC1458PI MA78M05UC 1 LA006-010 LA006-010 LA006-010 LA006-010 LA006-010 LA005-R22 Not assign LA006-010 N-Input SIG N74H11A 1 INCOO-029 FCD ILCOO-029 FCD ILCOO-029 FCD ILCOO-029 FCD ILCOO-005 MOT MC1458PI MA78M05UC 1 LA006-010 LA006-010 LA005-R22 Not assign LA006-010 ASE NSNR22K 1 TRANSISTORS NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET				1	1	1	1	
S			AND Gate, Triple 3-Input	1	1			
Phase-Frequency Detector 10000-029 FCD MOT MC1458PI 1 1 1 1 1 1 1 1 1		i i	Flip-Flop, J-K with AND inputs	IC000-019	1	1		
Dual Operational Amplifier IC000-005 MOT MC1458PI 1 1	1			IC000-029	FCD	11C44	1	
"J " CONNECTORS (JACKS) Jack Receptacle, 50 ohm "L " INDUCTORS 1 thru 16 17 18 19 "Q " TRANSISTORS NPN, Silicon N-channel, JFET NPN Silicon N-channel, JFET NPN Silicon NPN Silicon NPN Silicon NPN Silicon NPN Silicon NPN Silicon NPN Silicon NPN Silicon NPN Silicon NPN Silicon NPN Silicon N-channel, JFET NPN Silicon NPN Silicon N-channel, JFET NPN Silicon NPN Silicon N-channel, JFET NPN Silicon N-channel, JFET NPN Silicon N-channel, JFET	1				ł		1	
Jack Receptacle, 50 ohm JF000-005 APL 27-9 2		11	voltage regulator, 5 V	IC000-011	FCD	MA78M05UC	1	
Jack Receptacle, 50 ohm JF000-005 APL 27-9 2								
Jack Receptacle, 50 ohm JF000-005 APL 27-9 2 "L "INDUCTORS 10 Turn Toroid Fixed, 2.2 μH ±10% 13 Turn (32 AWG) on 2.2 Megohm resistor Fixed, .22 μH ±20% TRANSISTORS NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET NPN, Silicon N-channel, JFET	,	"J "	CONNECTORS (JACKS)					
"L " INDUCTORS 1 thru 16 17 18 19 19 10 Turn Toroid Fixed, 2.2 µH ±10% 13 Turn (32 AWG) on 2.2 Megohm resistor Fixed, .22 µH ±20% TRANSISTORS NPN, Silicon N-channel, JFET NPN Silicor Particles NPN Silicor Particles NPN Silicor Particles NPN Silicor Particles NPN Silicor Particles NPN Silicor Particles NPN Silicor Particles	:	1,2		JE000-005	ΔЪТ	27_0	2	
1 thru 16 17 18 19 18 19 19 10 Turn Toroid Fixed, 2.2 μH ±10% 13 Turn (32 AWG) on 2.2 Megohm resistor Fixed, .22 μH ±20% 10 Turn Toroid Fixed, 2.2 μH ±10% 13 Turn (32 AWG) on 2.2 Megohm resistor Fixed, .22 μH ±20% 10 Turn Toroid LA006-010 LA005-R22 NORN22 Norn assign LA006-010 Norn assign Norn assign Norn Silico]	, , , , , , , , , , , , , , , , , , , ,	31000-005	ALL	27-9		
1 thru 16 17 18 19 18 19 19 10 Turn Toroid Fixed, 2.2 μH ±10% 13 Turn (32 AWG) on 2.2 Megohm resistor Fixed, .22 μH ±20% 10 Turn Toroid Fixed, 2.2 μH ±10% 13 Turn (32 AWG) on 2.2 Megohm resistor Fixed, .22 μH ±20% 10 Turn Toroid LA006-010 LA005-R22 NORN22 Norn assign LA006-010 Norn assign Norn assign Norn Silico								
Fixed, 2.2 μH ±10% 18 19 13 Turn (32 AWG) on 2.2 Megohm resistor Fixed, .22 μH ±20% "Q " TRANSISTORS NPN, Silicon N-channel, JFET NPN Silicor Particles NPN Silicor Particles							.	
18 19 13 Turn (32 AWG) on 2.2 Megohm resistor Fixed, .22 μH ±20% "Q " TRANSISTORS NPN, Silicon N-channel, JFET NPN Silicor Particles N		i		LA006-010	W-I	LA006-010	16	
19 Fixed, .22 μH ±20% "Q " TRANSISTORS NPN, Silicon N-channel, JFET QA054-580 MOT 2N5458 1					ASE	08N2R2	1	
"Q " TRANSISTORS 1,4			Fixed 22 vH +20%				1	
1,4 NPN, Silicon QA038-541 G-E 2N3854A 2 N-channel, JFET QA054-580 MOT 2N5458 1	1		FIACU, .22 μπ ΞΖU%	LAU05-R02	ASE	O8NR22K	1	
1,4 NPN, Silicon QA038-541 G-E 2N3854A 2 N-channel, JFET QA054-580 MOT 2N5458 1								
1,4 NPN, Silicon QA038-541 G-E 2N3854A 2 N-channel, JFET QA054-580 MOT 2N5458 1	11	Q "	TRANSISTORS					
2 N-channel, JFET QA054-580 MOT 2N5458 1	1	, 4		0A038-541	G-E	2N385/A	2	
NDM Cilicon Deals at			N-channel, JFET		- 1	i		
	3		NPN, Silicon, Darlington	QA053-060	G-E	2N5306	1	

REFERENCE	DECORUNTION	WAVETEK	MAN	UFACTURER	Т
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Q
	Main P.C. Board Parts cont'd				<u></u>
''R ''	RESISTORS				
$1,\overline{2}$	Composition, 2.2 Kilohm ±10% ¼ W	RC104-222	А-В	CB2221	2
3	Composition, 33 Kilohm ±10% ¼ W	RC104-333	A-B	CB3331	1
4	Composition, 27 Kilohm ±5% ¼ W	RC103-327	A-B	CB2735	1
5	Composition, 12 Kilohm ±5% ¼ W	RC103-312	А-В	CB1235	1
6	Composition, 1 Megohm ±10% ¼ W	RC104-510	А-В	CB1051	1
7,13,27	Composition, 1 Kilohm ±10% ¼ W	RC104-210	A-B	CB1021	3
8,9	Composition, 100 Kilohm ±5% 1/8 W	RC101-410	A-B	BB1045	2
10,11	Composition, 220 Kilohm ±5% 1/8 W	RC101-422	A-B	BB2245	2
12,19	Composition, 1.8 Kilohm ±10% ¼ W	RC104-218	A-B	CB1821	2
14	Composition, 15 Kilohm ±10% ¼ W	RC104-315	A-B	CB1531	1
15	Compositoin, 220 Kilohm ±10% ¼ W	RC104-422	A-B	CB2241	1
16,18	Composition, 10 Kilohm ±10% ¼ W	RC104-310	A-B	CB1031	2
17	Composition, 2.7 Kilohm ±10% ¼ W	RC104-227	A-B	CB2721	1
20	Metal Film, 2.1 Kilohm ±1% 1/8 W	RF212-210	CGW	RN55D	1
21,22	Metal Film, 19.6 Kilohm ±1% 1/8 W	RF213-196	CGW	RN55D	2
23	Metal Film, 4.32 Kilohm ±1% 1/8 W	RF212-432	CGW	RN55D	1
24	Metal Film, 30.1 Kilohm ±1% 1/8 W	RF213-301	CGW	RN55D	1
25	Composition, 3.3 Megohm ±10% ¼ W	RC104-533	A-B	CB3351	1
26	Metal Film, 100 Kilohm ±1% 1/8 W	RF214-100	CGW	RN55D	1
28	Composition, 390 Kilohm ±10% ¼ W	RC104-439	A-B	CB3941	1
29	Metal Film, 12.1 Kilohm ±1% 1/8 W	RF213-121	CGW	RN55D	1
30	Metal Film, 36.5 Kilohm ±1% 1/8 W	RF213-365	CGW	RN55D	1
31	Metal Film, 12.1 Kilohm ±1% 1/8 W	RF213-121	CGW	RN55D	1
32	Variable Cermet, 20 Kilohm ±20%	RP130-320	CGW	89PR20K	1
33	Variable Cermet, 2.0 Kilohm ±20%	RP130-220	BEK	89PR2K	1
34	Composition, 2.0 Kilohm ±5%, ¼ W	RC103-220	A-B	CB2025	1
:	MISCELLANEOUS				
	Male Pole Contact	MC000-057	AMP	85891-6	17
	Component Socket	MC000-072	MOL	02-04-1875	2
	DAC - P.C. BOARD PARTS				
"TG 100"	TNUMECDAMEN CIDCUITUS				
"IC 100"	INTEGRATED CIRCUITS	IC000-005	MOT	MC1458PI	2
1,2 .	Dual Operational Amplifier	10000-003		110145011	-
"Q 100"	TRANSISTORS				
1A thru L	PNP, Silicon	QB000-009	MOT	1	12
2A thru L	NPN, Silicon	QA038-541	G-E	2N3854A	12
'' <u>R 100</u> ''	RESISTORS 10 Will be 100 H	RF213-100	CGW	RN55D	4
1,7,11,15	Metal Film, 10 Kilohm ±1% 1/8 W	RF213-100	CGW	RN55D	1
2	Metal Film, 100 Kilohm ±1% 1/8 W	RF214-100 RC104-510	A-B	CB1051	1
3 4,5,6	Composition, 1 Megohm ±10% ¼ W Metal Film, 4.32 Kilohm ±1% 1/8 W	RF212-432	CGW	RN55D	3
	I Motor Biim / 1/ Kilonm Tla 1/0 W	ハェムエムーサンム	1 000	141772	3

PARTS LIST KHZ STEPS

MODULE M31 REV E

REFERENCE	DESCRIPTION	WAVETEK	MAN	UFACTURER	Т
SYMBOL		PART NO.	CODE	NUMBER	Q
	DAC cont'd				
"R 100" 9,13,17 10,14,18 19A thru L 20A thru L 21,25,29 22,23,24,26, 27,28,30, 31,32		RF213-402 RF213-806 RC104-322 RC104-247 RC104-147 RC104-210	CGW CGW A-B A-B A-B	RN55D RN55D CB2231 CB4721 CB4711 CB1021	3 3 12 12 3 9
33 34	Composition, 6.8 Kilohm $\pm 5\%$ ½ W Composition, 820 ohm $\pm 5\%$ ½ W	RC103-268 RC103-182	A-B A-B	CB6825 CB8215	1 1
	MISCELLANEOUS 10 Contact Receptacle 5 Contact Receptacle 2 Contact Receptacle	MC000-051 MC000-052 MC000-077	AMP AMP W-I	6-38095-0 5-380950-5 MC000-077	1 1 1 1

REFERENCE	DESCRIPTION	WAVETEK	MAN	UFACTURER	Т
SYMBOL	BESONN FISH	PART NO.	CODE	NUMBER	Q
	MAIN CHASSIS (S-1)		 		<u> </u>
" <u>C</u> "	CAPACITORS Ceramic Feedthru, 470 pF ±20% 500 V	CF101-147	А-В	FA5C4711	3
1,29,30 4,15,16,18,	Tantalum, 1 µF 25 V	CE120-001	C-I	CCT025-105-	
19,39,40,				20	
5,17,20,21,	Ceramic Feedthru, Module Base Type, 1000pF	CF112-210	A-B	FA5C-1000pF	10
22,23,24, 25,26,27					
9	Electrolytic, 100 μF 12 V	CE119-110 CF104-150	A-E AER	ME4D100 EF-4	5
12,28,35,41, 44	Ceramic Feedthru, 500 pF ±20% 250 V	CF 104-150	AER	Er4)
13,42	Composition, 3.9 pF ±10% 500 V	CG101-239	Q-C A-E	QC3.9 ME3B100	2 1
14 31,38	Electrolytic, 100 µF 6 V Ceramic Feedthru, 100 pF ±10%	CE118-110 CF104-110	A-E AER	EF-4	2
32	Composition, 0.75 pF	CG102-175	Q-C	MC.75	1
33	Fixed	not assign	W-I		-
34,37	Composition, 0.62 pF	CG102-162	0−C	MC.62	2
36	Ceramic Disc, Solder-in 22 pF ±10% Ceramic Feedthru, 120 pF ±10% 500 V	CD108-022 CF102-112	RMC A-B	C,N220 FA5C-120	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
43 "CR "	DIODES	CF102-112	A-D	FA3C-120	
5	Silicon, Hot Carrier	DG000-009	н-Р	5082 -283 5	1
6	Silicon, Varicap	DC000-005	W-I	DC000-005	1
7	Red LED and mounting kit	DL000-001	NAT	NSL102	1
" <u>IC</u> "	INTEGRATED CIRCUITS	T4000 011	N7 A 771	NA78M05UC	1
2	5 V Regulator	IC000-011	NAT	NA / OFIU JUC	1
11 7 11	CONNECTORS (IACUS)				
" <u>J</u> " 1,2,3,4,5	CONNECTORS (JACKS) Jack, 50 ohm subminiature	JF000-005	AMP	27-9	5
	,				
''L ''	INDUCTORS				
1,3,5,6,7,8,	10 Turn Toroid	LA006-010	W-I	LA006-010	15
9,10,11, 12,13,14,					
15,22,23,					
16	Fixed, .22 μH ±10%	LA005-R02	ASE	08NR22K	1
17,18,19,20	Fixed	not assign LA006-004	W-I W-I	LA006-004	- 1
24	4 Turn Toroid	LAUUU-UU4	M_T	LA000-004	1
" <u>oc</u> "	OPTO-COUPLER	MD000 000	VAC	VTL5C3	1
1	LED/Photoce11	MP000-002	VAC	A T T 7 C 2	T
"0 "	TRANSTSTORS				
1	TRANSISTORS NPN, Silicon	QB000-013	APX	A430	1
2,3	NPN, Silicon	QA050-530	APX	2N5053	2
-					

REFERENCE	DESCRIPTION	WAVETEK	MAN	UFACTURER	Т
SYMBOL		PART NO.	CODE	NUMBER	Q
"R" 2 8 9 18 11,17,19 12 13 14 15 16,21 10,20 24 22 23 25	RESISTORS Composition, 2.2 Kilohm ±10% ¼ W Composition, 100 Kilohm ±10% ¼ W Metal Film, 499 ohm ±1% ¼ W Composition, 4.7 Kilohm ±10% ¼ W Composition, 10 Kilohm ±10% ¼ W Composition, 2.7 ohm ±5% ¼ W Composition, 820 ohm ±5% 1/8 W Composition, 2.7 Kilohm ±10% ¼ W Composition, 18 Kilohm ±5% 1/8 W Composition, 1 Kilohm ±5% 1/8 W Composition, 4.7 Kilohm ±5% 1/8 W Composition, 1.2 Kilohm ±5% 1/8 W Composition, 68 ohm ±5% 1/8 W Composition, 68 ohm ±5% 1/8 W Composition, 33 ohm ±10% ¼ W Composition, 33 ohm ±10% ¼ W	RC104-222 RC104-410 RF211-499 RC104-247 RC104-310 RC103-R27 RC101-182 RC104-227 RC101-318 RC104-210 RC101-247 RC101-247 RC101-068 RC104-315 RC104-033	A-B A-B CGW A-B A-B A-B A-B A-B A-B A-B A-B A-B A-B	CB2221 CB1041 RN55D CB4721 CB1031 CB27G5 BB8215 CB2721 BB1835 CB1021 BB4725 BB1225 BB6805 CB1531 CB3301	1 1 1 1 1 1 1 2 2 1 1 1 1 1
	VIDEO AMP. ASSEMBLY (S-2)				
"C 100" 1,8 3,4,6,10, 12,14 2,5,7 9 11,13	CAPACITORS Ceramic Miniature, .01 μF ±20% 50 V Tantalum, 1 μF 25 V Ceramic Feedthru, 500 pF ±20% 250 V Ceramic Disc, 120 pF ±20% 1 kV Ceramic Feedthru, 68 pF ±10%	CD113-310 CE120-001 CF104-150 CD102-112 CF120-068	C-L ACI AER SPR AER	CY15C103 100DE105 EF-4 5GA-T12 4420	2 6 3 1 2
"L 100" 1,7 2 3 4 5,6	INDUCTORS Fixed, 0.22 µH ±10% Fixed, 1.0 µH ±10% 10 Turn Toroid 4 Turn Toroid Fixed, .1 µH ±10% TRANSISTORS	LA005-R02 LA005-R10 LA006-010 LA006-004 LA005-R01	ASE ASE W-I W-I ASE	08NR22K 08N1R0K LA006-010 LA006-004 08NR10K	2 1 1 1 2
1,2,3,4,5	NPN, Silicon	QA050-530	APX	2N5053	5

REFERENCE	DECODIBITION	WAVETEK	MAN	UFACTURER	Т
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Q
"R 100" 1 2,7 3,6 4 5 8 9 10 11 12	RESISTORS Fixed Comp., 82 ohm ±10% ¼ W Fixed Comp., 560 ohm ±10% ¼ W Fixed Comp., 820 ohm ±5% 1/8 W Fixed Comp., 47 ohm ±5% 1/8 W Fixed Comp., 68 ohm ±5% 1/8 W Fixed Comp., 100 ohm ±5% 1/8 W Fixed Metal Film, 374 ohm ±1% 1/8 W Fixed Comp., 1 Kilohm ±10% ¼ W Fixed Comp., 15 Kilohm ±10% ¼ W Fixed Comp., 2.2 Kilohm ±10% ¼ W	RC104-082 RC104-156 RC101-182 RC101-047 RC101-068 RC101-110 RF211-374 RC104-210 RC104-315 RC104-222	A-B A-B A-B A-B CGW A-B A-B A-B	CB8201 CB5611 BB8215 BB4705 BB6805 BB1015 RN55D CB1021 CB1531 CB2221	1 2 2 1 1 1 1 1 1
	PROGRAMMABLE DIVIDER ASSEMBLY (S-3)				
" <u>IC 200"</u> 1 2 3 4 5 6	INTEGRATED CIRCUITS Flip-Flop, Dual D Type, Schottky Counter Presettable Decade, Schottky Flip-Flop, J-K Edge Triggered w/AND inputs Flip-Flop, Dual "D" Type Counter Presettable Decade Phase-Frequency Detector	IC000-015 IC000-017 IC000-019 IC000-021 IC000-016 IC000-013	T-I SiG T-I FCD SIG MOT	SN74S74N N82S90A SN74H102N 7474PC N8290A MC4044P	1 1 1 1 1
"R 200" 1 2,3	RESISTORS Fixed Comp., 1.2 Kilohm ±10% ¼ W Fixed Comp., 8.2 Kilohm ±10% ¼ W	RC104-212 RC104-282	A-B A-B	CB1221 CB8221	1 2
	- '				
"CR 300" 1,2,3,4,5,6,7,8	CAPACITORS Tantalum, 1 uF 25 V Ceramic Disc, .05 uF ±20% 50 V Mylar, .1 µF ±10% 200 V Electrolytic, 10 µF 25 V DIODES Silicon, General Purpose 100 PIV, 750 mA	CE120-001 CD103-350 CP101-410 CE105-010 DR000-001	C-I SPR C-D SPR ITT	CCT-025-105 TG-S50 WMF-2PI TE-1204 1N4004	1 1 1 1 8
"IC 300" 1 2,3	INTEGRATED CIRCUITS Transistor Array, NPN 16 pin DIP Dual Op. Amp. RC4558DN RAY only	IC000-020 IC000-027	RCA W-I	CA3083 IC000-027	1 2

REFERENCE	DESCRIPTION	WAVETEK	MAN	UFACTURER	Т
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Q
"Q 300"	TRANSISTORS				
1	Silicon, NPN	QA038-541	G-E	2N3854A	1
"R 300"	RESISTORS				
1,8,11,12, 19	Fixed Comp., 5.6 Kilohm ±10% ¼ W	RC104-256	А-В	CB5621	5
2,10,18,34	Fixed Comp., 47 Kilohm ±10% ¼ W	RC104-347	A-B	CB4731	4
3,9	Fixed Comp., 4.7 Kilohm ±10% ¼ W	RC104-247	A-B	CB4721	2
4	Fixed Comp., 8.2 Kilohm ±10% ¼ W	RC104-282	A-B	CB8221	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
5,6	Fixed Comp., 120 Kilohm ±10% ¼ W	RC104-412	A-B	CB1241	1 1
7	Fixed Comp., 33 Kilohm ±10% ¼ W	RC104-333	A-B	CB3331	1
13	Fixed Comp., 2.2 Kilohm ±10% ¼ W	RC104-222	A-B	CB2221	1 1
14	Fixed Comp., 27 Kilohm ±5% ¼ W	RC103-327	A-B	CB2735	3
15,26,27	Fixed Comp., 12 Kilohm ±5% ¼ W	RC103-312	A-B	CB1235	1 1
16	Fixed Comp., 3.3 Kilohm ±10% ¼ W	RC104-233	A-B	CB3321	1 3
17,29,30	Fixed Comp., 100 Kilohm ±10% ¼ W	RC104-410	A-B	CB1041	1 1
20,28	Variable Cermet, 20 Kilohm ±10% 3/4 W	RP130-320	BEK	89PR20K	2
21,35,36	Fixed Comp., 10 Kilohm ±10% ¼ W	RC104-310	A-B	CB1031	3
24,25	Fixed Comp., 22 Kilohm ±10% ¼ W	RC104-322	A-B	CB2231	2
31,32	Fixed Comp., 220 Kilohm ±10% ¼ W	RC104-422	A-B	CB2241	2
33	Fixed Comp., 1.8 Kilohm ±10% ¼ W	RC104-218	A-B	CB1821 CB2035	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
22	Fixed Comp., 20 Kilohm ±5% ¼ W	RC103-320	A-B		1 6
37	Variable Cermet, 50 Kilohm	RP129-350	CTS	360S503B	1 1
38	Fixed Comp., 2.2 Megohm ±10% ¼ W	RC104-522	A-B	CB2251 CB1021	1
39	Fixed Comp., 1 Kilohm ±10% ¼ W	RC104-210	A -B	CB2231	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
40	Fixed Comp., 22 Kilohm ±10% ¼ W	RC104-322	A-B	CB1831	1
41	Fixed Comp., 18 Kilohm ±10% ¼ W	RC104-318	A-B	CB1541	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
42	Fixed Comp., 150 Kilohm ±10% ¼ W	RC104-415	A-B	(.51341	1
	LEVELER ASSEMBLY (S-5)				
"C 400"	CAPACITORS				
1	Ceramic Disc, .001 µF ±20% 1 kV	CD102-210	SPR	5GA-D10	1
2	Ceramic Disc, .005 μ F $\pm 20\%$ 100 V	CD103-250		TG-D50	1 1
" <u>IC 400</u> "	INTEGRATED CIRCUITS				,
1	Operational Amplifier	IC000-002	SIG	N5741V	1
''R 400''	RESISTORS				
1	Composition, 1 Kilohm ±10% 1/4 W	RC104-210	A-B	CB1021	1
2	Composition, 10 Kilohm ±10% ¼ W	RC104-310	A-B	CB1031	! 1
3	Composition, 15 Kilohm ±10% 1/1	RC104-315	A-B	CB1531	1 1
4	Composition, 560 Kilohm ±10% ½ W	RC104-456	A-B	CB5641	1
5	Composition, 150 Kilohm ±10% 1/4 W	RC104-415	А-В	CB1541	1
	MIXER ASSEMBLY (S-6)				
U.G. FOOU	CADACITODS			į	
" <u>C 500</u> "	CAPACITORS Commis Ministrum 001 UF +20%	CD112-210	ETP	8101-050	3
1,2,3	Ceramic Miniature, .001 µF ±20%	CF104-150	AER	EF-4	2
4,5	Ceramic Feedthru, 500 pF ±20% 250 V	CG102-211	Q-C	MC1.1	1
6	Composition, 1.1 pF ±10% 500 V	00102-211	`< '	1101.1	

PARTS LIST MHz STEPS

MODULE M32 REV E

REFERENCE	DESCRIPTION	WAVETEK		UFACTURER	! '
SYMBOL		PART NO.	CODE	NUMBER	Q
"CR 500" 1,2 3,4	DIODES Silicon, PIN Silicon, Hot Carrier	DP000-040 DG000-009	W-I W-I	DP000-040 DG000-009	2 2
" <u>L 500</u> " 1 2	INDUCTORS Fixed Fixed	LA007-001 Not assign	W-I W-I	LA007-001	1
" <u>R 500"</u> 1,2 3	RESISTORS Composition, 47 Kilohm ±5% 1/8 W Composition, 390 ohm ±5% 1/8 W	RC101-347 RC101-139	A-B	BB4735 BB3915	2
" <u>T 500</u> "	TRANSFORMERS RF Transformer	TR001-001	W-I	TR001-001	1

	LOCK	MODO		M33-2	_
REFERENCE		WAVETEK	MAI	NUFACTURER	T
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	٦
	Following is parts list for M33-I; see	about 2 for M3			+-
"C "	CAPACITORS	sneet z 101 ms	J a z (1.	literences	
1,20,21	Cer ft, 6.8 pF ±10%, 500 V	CF102-R68	A-B	FA5C	3
2	Comp, 10 pF ±10%, 500 V	CG101-310	Q-C		1
3,7,13,24,31		CD103-250	SPR	1 -	5
4,10	Cer ft, 150 pF ±10%, 500 V	CF116-115	AER		2
5,6,8,9,11,		CE120-001	ACI	1	10
15,26,27,				K25A2	
30,32			1		
12	Cer disc, 470 pF ±20%, 1 kV	CD102-147	SPR		1
14,18,19,37	Cer disc, .001 µF ±20%, 1 kV	CD102-210	SPR	1	4
16,42	Cer disc, .05 μF ±20%, 100 V	CD103-350	SPR		2
17,35,36	Cer disc, .002 µF ±20%, 1 kV	CD102-220	SPR		3
22	Elect, 100 µF, +100%-10%, 12 V	CE119-110	ARC	1	1
23,28,29,34	Cer ft, 1000 pF GMV, 500 V	CF112-210	A-B		4
25 38,39	Elect, 100 μF, +100%-10%, 6 V	CE118-110 CD114-510	ARC		1 2
40	Cer mono, 1 μF +80%-20%, 50 V Cer disc, .1 μF ±20%, 100 V	CD114-310 CD103-410	AER SPR		1
41	Cer ft, 120 pF ±10%, 500 V	CF102-112	A-B		1
	300 V	01102 112	1 1 1	11130	1
" <u>CR</u> "	DIODES				
1,2	Si, PIN	DP000-040	M-A	1	2
3 4	Schottky	DG000-009	H-P		1
5,6,7,8,11,	Si, Hot Carrier Si, Junction, 100 PIV	DG000-007 DR000-001	H-P DIO	5082-2800 1N4004	1 9
12,13,14,	si, sunction, 100 fiv	DK000-001	DIO	1N4004	
15					
9	Red LED with mounting Kit	DL000-001	NAT	NSL5046	1
10	Zener, 4.7 V ±10%, 1 W	DB000-010	MOT	1N4732	1
"IC "	INTEGRATED CIRCUITS				
1	Operational Amplifier, 8 pin, DIP	IC000-002	SIG	N5741V	1
2,3,9	Dual Operational Amplifier, 8 pin, Di		MOT	MC1458P1	3
4	Voltage Regulator, 5 V	IC000-011	FCD	μA78M05UC	1
5	3 digit BCD counter	ID001-001	MOT	MC14553CL	1
6	Hex Inverter open collector	IC000-023	T-I	SN7405	1
7,8	Phase/Frequency Detector	IC000-013	MOT	MC4044P	2
"J "	CONNECTORS (JACKS)				
1,2,3,4,5	Jack, 50 Ω , subminiature	JF000-005	APL	27-9	5
"L "	INDUCTORS				
1,2,5,6	Fxd, 3.3 µH, conformal coated	LA005-R33	ASE	08N3R3	4
3,4,8,9,10,	10 Turn Toroid	LA006-010	W-I	LA006-010	8
11,12,13					
7	4 Turn Toroid	LA006-004	W-I	LA006-004	1

PARTS LIST NARROW OSCILLATOR LOCK

MODULE M33-2 REV B

_	LOCK	,			
REFERENCE		WAVETEK	MAN	UFACTURER	T
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	à
STWBOL			CODE	NONDER	
					1
	mp Avaramona				
'' <u>Q</u> ''	TRANSISTORS	04.029 5/1	G-E	2N3854A	2
1,2	NPN, Si	QA038-541			1
3	NPN, Si	QA050-530	AMP	2N5053	1
4	P-channel, JFET	QA054-610	MOT	2N5461	1
5	N-channel, JFET	QA054-580	MOT	2N5458	1
			:		
"R "	RESISTORS				
1,2,5	Comp, 56 Ω ±10%, $\frac{1}{4}$ W	RC104-056	A-B	CB5601	3
3,41,43,44,	Comp, 1 kΩ ±10%, ¼ W	RC104-210	A-B	CB1021	6
45,46	••				
4,10,13,25,	Comp, 2.2 k Ω ±10%, $\frac{1}{4}$ W	RC104-222	A-B	CB2221	5
55					
6	Comp, 47 kΩ ±10%, ¼ W	RC104-347	A-B	CB4731	1
7,8	Comp, 470 Ω ±10%, $\frac{1}{4}$ W	RC104-147	A-B	CB4711	2
9,14	Comp, 22 kΩ ±10%, ¼ W	RC104-322	A-B	CB2231	2
	Comp 300 0 +10% 1 W	RC104-139	A-B	CB3911	2
11,12 15,12	Comp, 390 Ω ±10%, $\frac{1}{4}$ W Comp, 47 Ω ±10%, $\frac{1}{4}$ W	RC104-047	A-B	CB4701	1
16*	Comp, 100 Ω ±10%, ¼ W	RC104-110	A-B	CB1011	1
17	Comp, 1.2 k Ω ±10%, $\frac{1}{4}$ W	RC104-212	A-B	CB1221	1
	Met flm, 619 Ω ±1%, 1/8 W	RF211-619	CGW	RN55D	1
18		RF212-274	CGW	RN55D	1
19	Met flm, 2.74 k Ω ±1%, 1/8 W	RC104-410	A-B	CB1041	6
20,30,32,49, 61,62					
21	Comp, 15 kΩ ±10%, ¼ W	RC104-315	1	CB1531	
22,28,29,48,	Comp, 10 kΩ ±10%, ¼ W	RC104-310	A-B	CB1031	5
50					
23	Var cermet, $100~\mathrm{k}\Omega$	RP144-410	HEL	91AR100K	1
24	Comp, 2.2 M Ω ±10%, $\frac{1}{4}$ W	RC104-522	A-B	CB2251	1
26	Comp, 2.7 kΩ ±10%, ¼ W	RC104-227	A-B	CB2721	1
27,34,38,66		RC104-218	A-B	CB1821	4
31,33,63,64		RC104-418	A-B	CB1841	4
	Comp, 820 Ω ±10%, $\frac{1}{4}$ W	RC104-182	A-B	CB8211	1
35	Comp, $39 \text{ k}\Omega \pm 10\%$, $\frac{1}{4} \text{ W}$	RC104-339	A-B	CB3931	2
37,67	Comp, $\frac{39}{4}$ $\frac{100}{4}$ $\frac{100}{4}$ $\frac{100}{4}$ $\frac{100}{4}$ $\frac{100}{4}$	RC104-327	A-B	CB2731	6
39,42,51,	comp, 21 ks/ ±10/6, 4 w	10104 527			
52,53,54	Comp, 270 Ω ±5%, ½ W	RC103-127	A-B	CB2715	1
40		RC103-312	A-B	CB1235	2
56,57	Comp, 12 kΩ ±5%, ¼ W	RC103-312	A-B	CB3325	1
58	Comp, 3.3 k Ω ±5%, $\frac{1}{4}$ W	RC103-233	A-B	CB4745	2
59,60	Comp, 470 k Ω ±5%, $\frac{1}{4}$ W	RC103-447	A-B	CB6825	1
65	Comp, $6.8 \text{ k}\Omega \pm 5\%$, $\frac{1}{4} \text{ W}$	KC103-200	A-B	000023	*
					\vdash
	For M33-2 add following parts to M33-1	GD110 010	 	TAFO	1
C33	Cer ft, 1000 pF GMV, 500 V	CF112-210	A-B	FA5C	1
R47	Comp, 33 k Ω $\pm 5\%$, $\frac{1}{4}$ W	RC103-339	A-B	CB3335	$\mid 1 \mid$
R67	Comp, 27 k Ω ±10%, $\frac{1}{4}$ W	RC104-327	A-B	CB2731	1
	For M33-2 Delete following parts from M33	-1			
R67	Comp. 39 k Ω ±10%, $\frac{1}{4}$ W	RC104-339	A-B	CB3931	1
LO1	Comp, 33 Km = 10%, 4 W	10104 337			\Box

REFERENCE	DESCRIPTION	WAVETEK	MAN	UFACTURER	_ ⊤
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Q
	MAIN CHASSIS (S-1)				ļ
"C" 1 2,6,9 3 4,5,7,8 10,11,12 13 14,15,16,17, 20		CE119-110 CF112-210 CE118-110 CD103-310 CE120-001 CF104-150 CF102-R68	ARC A-B ARC SPR ACI AER A-B	ME4D100 FA5C ME3B100 TG-S10 100DE105 EF-4 FA5C6895	1 3 1 4 3 1 5
18,19	Ceramic Feedthru, 120 pF ±10% 500 V	CF102-112	A-B	FA5C	2
" <u>CR</u> " 1 2	DIODES Schottky Red LED with mounting kit	DG000-009 DL000-001	H-P FCD	5082-2835 FLV102	1 1
" <u>IC</u> " 1 2	INTEGRATED CIRCUITS Voltage Regulator, 5 V Phase-Frequency Detector	IC000-011 IC000-029	FCD FCD	μΑ78M05UC 11C44	1 1
" <u>J</u> " 1,2,3,4,5	CONNECTORS (JACKS) Jack, 50 ohm subminiature	JF000-005	APL	27–9	5
"L" 1 2,3,4,5,6,7, 8,9,10,11, 12		LA007-001 LA006-010	W-I W-I	LA007-001 LA006-010	1 11
"R" 1 2*,7* 3,8* 4* 5*	RESISTORS Composition, 2.2 Kilohm ±10% ¼ W Composition, 100 ohm ±10% ¼ W Composition, 47 ohm ±10% ¼ W Composition, 47 ohm ±5% 1/8 W Composition, 470 ohm ±10% ¼ W Composition, 1.2 Kilohm ±10% ¼ W	RC104-222 RC104-110 RC104-047 RC101-047 RC104-147 RC104-212	A-B A-B A-B A-B A-B	CB2221 CB1011 CB4701 BB4705 CB4711 CB1221	1 2 2 1 1
	WIDE BAND MIXER ASSEMBLY (S-2)		 		
" <u>C 100</u> " 1,4 2,3	CAPACITORS Ceramic Feedthru, 500 pF ±20% 250 V Ceramic Disc, .001 µF ±20% 50 V	CF104-150 CD112-210	AER ETP	EF-4 8101-050- 651-102M	2 2
I		1	1		1

PARTS LIST WIDE OSCILLATOR LOCK MODULE M34 REV F

REFERENCE SYMBOL	DESCRIPTION	WAVETEK PART NO.	MAN	IUFACTURER NUMBER	T Q
"CR 100" 1,2 3,4	DIODES Silicon, PIN Schottky	DP000-040 DG000-009	M-A H-P	MA47047 5082-2835	2 2
" <u>L 100</u> " 1 2	INDUCTORS 1 Turn Toroid 10 Turn Toroid	LA007-001 LA006-010	W-I W-I	LA007-001 LA006-010	1 1
" <u>R 100"</u> 1,2 3	RESISTORS Composition, 47 Kilohm ±5% 1/8 W Composition, 27 ohm ±10% ½ W	RC101-347 RC104-027	A-B A-B	BB4735 CB2701	2 1
" <u>T 100</u>	TRANSFORMER RF Transformer	TR001-001	W-I	TR001-001	1
	WIDE BAND AMPLIFIER ASSEMBLY (S-3)				
"C 200" 1,4 2*,7,10 3 5* 6 8,9	CAPACITORS Ceramic Disc, .005 F +80 -20% 100 V Ceramic Disc, 6.8 pF ±5% 1 kV Ceramic Feedthru, 500 pF ±20% 250 V Composition, 2.7 pF ±10% 500 V Composition, 4.7 pF ±10% 500 V Ceramic Disc, 15 pF ±5% 1 kV	CD103-250 CD101-R68 CF104-150 CG101-227 CG102-247 CD101-015	SPR SPR AER Q-C Q-C SPR	TG-D50 10TCC-V68 EF-4 QC2.7 MC4.7 10TCC-Q15	2 2 1 1 1 2
" <u>L 200</u> " 1 2,3 4	INDUCTORS 4 Turn 6 Turn 5 Turn	not assign not assign not assign	W-I W-I W-I		
" <u>Q 200</u> "	TRANSISTORS NPN, Silicon	QA050-530	AMP	2N5053	2
"R 200" 1 2 3 4 5	RESISTORS Composition, 820 ohm ±10% ¼ W Composition, 560 ohm ±10% ¼ W Composition, 68 ohm ±10% ¼ W Composition, 47 ohm ±10% ¼ W Composition, 100 ohm ±10% ¼ W	RC104-182 RC104-156 RC104-068 RC104-047 RC104-110	A-B A-B A-B A-B	CB8211 CB5611 CB6801 CB4701 CB1011	1 1 1 1 1 1

DESCRIPTION	WAVETEK	WAN	IUFACTURER	T
	PART NO.	CODE	NUMBER	Q
VIDEO AMPLIFIER ASSEMBLY (S-4)				<u> </u>
<u>S</u> eedthru, 39 pF ±5% 500 V	CF114-039		4420	1
eedthru, 27 pF ±5% 500 V iniature, .01 µF ±20% 50 V eedthru, 2200 pF GMV 500 V	CF114-027 CD113-310 CF115-222		4420 CY15C103 4420	1 4 6
1 μF ±10% 25 V eedthru, 120 pF ±10% 500 V eedthru, 150 pF ±10% 500 V eedthru, 360 pF ±10% 500 V isc, 100 pF ±5% 1 kV	CE120-001 CF116-112 CF116-115 CF116-136 CD104-110	ACI AER AER AER SPR	100DE105 4420 4420 4420 4420 10TCU-T10	3 2 1 3 1
Hot Carrier	DG000-013	H-P	5082-3188	3
7 μH ±10% coid 7 μH uH proid	LA005-R47 LA006-004 LA005-R04 LA005-R10 LA006-010	ASE W-I ASE ASE W-I	08N4R7K LA006-004 08NR47K 08N1R0K LA006-010	2 1 1 3 1
eon	QA050-530	APX	2N5053	4
on, 22 Kilohm ±5% 1/8 W on, 47 ohm ±5% 1/8 W on, 2.2 Kilohm ±5% 1/8 W on, 390 ohm ±5% 1/8 W on, 2 Kilohm ±5% 1/8 W on, 15 Kilohm ±1% ¼ W on, 1 Kilohm ±1% ¼ W on, 499 ohm ±1% ¼ W on, 499 ohm ±1% ¼ W	RC101-322 RC101-047 RC101-222 RC101-139 RC101-220 RF213-150 RF212-100 RF211-499 RF211-499	A-B A-B A-B A-B CGW CGW CGW	BB2235 BB4705 BB2225 BB3915 BB2025 RN55D RN55D RN55D	3 4 3 3 1 1 1 1
ELER ASSEMBLY (S-5)				
1 μF ±10% 25 V sc, .005 μF +80 -20% 100 V sc, .001 μF ±20% 1 kV	CE120-001 CD103-250 CD102-210	ACI SPR SPR	100DE105 TG-D50 5GA-D10	2 1 1
)	n, 22 Kilohm ±5% 1/8 W n, 47 ohm ±5% 1/8 W n, 2.2 Kilohm ±5% 1/8 W n, 390 ohm ±5% 1/8 W n, 2 Kilohm ±5% 1/8 W n, 2 Kilohm ±1% ¼ W , 15 Kilohm ±1% ¼ W , 1 Kilohm ±1% ¼ W , 499 ohm ±1% ¼ W , 2.43 Kilohm ±1% ¼ W ELER ASSEMBLY (S-5) L µF ±10% 25 V sc, .005 µF +80 -20% 100 V	QA050-530 n, 22 Kilohm ±5% 1/8 W n, 47 ohm ±5% 1/8 W n, 2.2 Kilohm ±5% 1/8 W n, 390 ohm ±5% 1/8 W n, 2 Kilohm ±5% 1/8 W n, 2 Kilohm ±5% 1/8 W n, 2 Kilohm ±1% ¼ W n, 15 Kilohm ±1% ¼ W n, 15 Kilohm ±1% ¼ W n, 499 ohm ±1% ¼ W n, 499 ohm ±1% ¼ W n, 2.43 Kilohm ±1% ¼ W ELER ASSEMBLY (S-5) ELER ASSEMBLY (S-5) 1 µF ±10% 25 V 5c, .005 µF +80 -20% 100 V CE120-001 CD103-250	QA050-530 APX n, 22 Kilohm ±5% 1/8 W n, 47 ohm ±5% 1/8 W n, 2.2 Kilohm ±5% 1/8 W n, 390 ohm ±5% 1/8 W n, 2 Kilohm ±5% 1/8 W n, 2 Kilohm ±5% 1/8 W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 499 ohm ±1% ¼ W n, 499 ohm ±1% ¼ W n, 2.43 Kilohm ±1% ¼ W n, 2.05 W ELER ASSEMBLY (S-5) CE120-001 ACI CD103-250 SPR	QA050-530 APX 2N5053 n, 22 Kilohm ±5% 1/8 W n, 47 ohm ±5% 1/8 W n, 2.2 Kilohm ±5% 1/8 W n, 390 ohm ±5% 1/8 W n, 2 Kilohm ±5% 1/8 W n, 2 Kilohm ±5% 1/8 W n, 2 Kilohm ±5% 1/8 W n, 2 Kilohm ±5% 1/8 W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 2 Kilohm ±1% ¼ W n, 3 CGW n, 55D n, 2 Kilohm ±1% ¼ W n, 2 CGW n, 55D n, 3 CEl20-001 n, 4 CEl20-001 n, 4 CEl20-001 n, 4 CEl20-001 n, 4 CEl20-001 n, 4 CEl20-001 n, 5 CEl20-001 n, 4 CEl20-001 n, 5 CEl20-001 n, 5 CEl20-001 n, 6 CEl20-001 n

REFERENCE	DESCRIPTION	WAVETEK	L	UFACTURER	┨ ' 1
SYMBOL		PART NO.	CODE	NUMBER	Q
"CR 400" 1,2,3,4,5,6, 7,8	DIODES Silicon, Junction 100 PIV	DR000-001	DIO	1n4004	8
" <u>IC 400</u> "	INTEGRATED CIRCUITS Dual Op. Amp. RC4558DN, RAY only	IC000-027	W-I	IC000-027	1
"Q " 1,2,3,5" 4	TRANSISTORS NPN, Silicon PNP, Silicon	QA038-541 QB000-009	G-E MOT	2N3854A MPS3702	4
" <u>R 400"</u> 1,3 2,10,17 4,5 6 7 8,9 11 12 13 14 15 16 18	RESISTORS Composition, 15 Kilohm ±10% ¼ W Composition, 47 Kilohm ±10% ¼ W Composition, 10 Kilohm ±10% ¼ W Composition, 1 Kilohm ±10% ¼ W Composition, 33 Kilohm ±10% ¼ W Composition, 7.5 Kilohm ±5% ¼ W Composition, 100 Kilohm ±10% ¼ W Composition, 1 Megohm ±10% ¼ W Composition, 2.2 Kilohm ±10% ¼ W Composition, 330 Kilohm ±10% ¼ W Composition, 2.2 Megohm ±10% ¼ W Composition, 470 Kilohm ±10% ¼ W Composition, 22 Kilohm ±10% ¼ W Composition, 22 Kilohm ±10% ¼ W Composition, 22 Kilohm ±10% ¼ W Composition, 22 Kilohm ±10% ¼ W Composition, 22 Kilohm ±10% ¼ W Composition, 1.8 Kilohm ±10% ¼ W	RC104-315 RC104-347 RC104-310 RC104-210 RC104-233 RC103-275 RC104-410 RC104-510 RC104-522 RC104-433 RC104-522 RC104-447 RC104-322 RC104-218	A-B A-B A-B A-B A-B A-B A-B A-B A-B A-B	CB1531 CB4731 CB1031 CB1021 CB3331 CB7525 CB1041 CB1051 CB2221 CB3341 CB2251 CB4741 CB2231 CB1821	2 3 2 1 1 2 1 1 1 1 1 1 1 1
"C 500" 1 2 3 4,7 5 6 8 9	CAPACITORS Ceramic Disc, 25 pF ±5% 1 kV Mylar, .022 µF ±10% 200 V Tantalum, 1 µF ±10% 25 V Ceramic Disc, .05 µF +80 -20% 100 V Ceramic Disc, .05 pF ±20% 1 kV Ceramic Disc, 470 pF ±20% 1 kV Ceramic Disc, .005 µF +80 -20% 100 V Ceramic Disc, .005 µF ±20% 1 kV Ceramic Disc, .005 µF ±20% 1 kV Ceramic Disc, .001 µF ±20% 1 kV	CD101-025 CP101-322 CE120-001 CD103-350 CD102-115 CD102-147 CD103-250 CD102-210	SPR CDE ACI SPR SPR SPR SPR SPR	10TCC-025 WMF-2S22 100DE105 TG-S50 5GA-T15 5GA-T47 TG-D50 5GA-D10	1 1 1 2 1 1 1
"CR 500" 1,2,3,4,5,6	DIODES Silicon, Junction 100 PIV	DR000-001	DIO	1n4004	6
" <u>IC 500</u> " 1,2	INTEGRATED CIRCUITS Dual Op. Amp. RC4558DN RAY only	IC000-027	W-I	IC000-027	2

PARTS LIST WIDE OSCILLATOR LOCK MODULE M34 REV F

					_
REFERENCE	DESCRIPTION	WAVETEK	MAN	IUFACTURER	Т
SYMBOL		PART NO.	CODE	NUMBER	Q
" <u>Q 500</u> " 1 2	TRANSISTORS N-channel, JFET P-channel, JFET	QA054-580 QA054-610	MOT MOT	2N5458 2N5461	1 1
"R 500" 1 2 3 4,10 5 6 7,8 9 11 12,14 13,15 16,19,21 17,18 20,22	RESISTORS Composition, 470 ohm ±10% ½ W Composition, 82 Kilohm ±10% ½ W Composition, 1.2 Kilohm ±10% ½ W Composition, 3.3 Kilohm ±10% ½ W Composition, 27 Kilohm ±5% ½ W Composition, 12 Kilohm ±5% ½ W Composition, 10 Kilohm ±10% ¼ W Composition, 2.2 Megohm ±10% ¼ W Composition, 4.7 Kilohm ±10% ¼ W Composition, 470 Kilohm ±10% ¼ W Composition, 470 Kilohm ±10% ¼ W Composition, 33 Kilohm ±10% ¼ W Composition, 680 Kilohm ±10% ¼ W Composition, 680 Kilohm ±10% ¼ W Composition, 100 Kilohm ±10% ¼ W	RC104-147 RC104-382 RC104-212 RC104-233 RC103-327 RC103-312 RC104-310 RC104-522 RC104-247 RC104-447 RC104-610 RC104-333 RC104-468 RC104-410	A-B A-B A-B A-B A-B A-B A-B A-B A-B A-B	CB4711 CB8231 CB1221 CB3321 CB2735 CB1235 CB1031 CB2251 CB4721 CB4741 CB1061 CB3331 CB6841 CB1041	1 1 1 2 1 1 2 1 1 2 2 3 2 2
	VIDEO MIXER ASSEMBLY (S-7)				
" <u>C 600</u> " 1 2	CAPACITORS Ceramic Feedthru, 18 pF ±5% 500 V Ceramic Feedthru, 39 pF ±5% 500 V	CF113-018 CF114-039	AER AER	4420 4420	1
"CR 600	DIODES Schottky	DG000-009	Н-Р	5082-2835	2
" <u>L 600</u> "	INDUCTORS Fixed, 4.7 H ±10%	LA005-R47	ASE	08N4R 7 K	1
" <u>R 600</u> " 1 2	RESISTORS Composition, 47 ohm $\pm 5\%$ 1/8 W Composition, 470 ohm $\pm 10\%$ $\frac{1}{4}$ W	RC101-047 RC104-147	A-B A-B	BB4705 CB4711	1 1
" <u>T 600</u> "	TRANSFORMERS RF Transformer	TR001-002	W-I	TR001-002	1

		T.
		· ·
		i 1

SECTION 7 SCHEMATICS

7.1 INTRODUCTION

This section contains all schematics for the instrument. A schematic index is given in paragraph 7.4.

7.2 SCHEMATIC NOTES

The following notes and abbreviations pertain to all schematics. Additional notes pertaining to specific schematics

are included on each schematic if required.

All values are shown in the following units unless otherwise specified.

Units
ohms picofarads microhenries

Denotes DC voltage reading in volts unless otherwise specified.

Denotes high impedance crystal detector reading in volts unless otherwise specified.

Denotes 50 ohm crystal detector reading in volts unless otherwise specified.

——০¦৪ Signal or voltage source.

______ Connects to indicated signal or voltage source.

Arrow indicates clockwise rotation of wiper.

─────────────────────── Coaxial jack

------ Coaxial plug

---- Coaxial cable

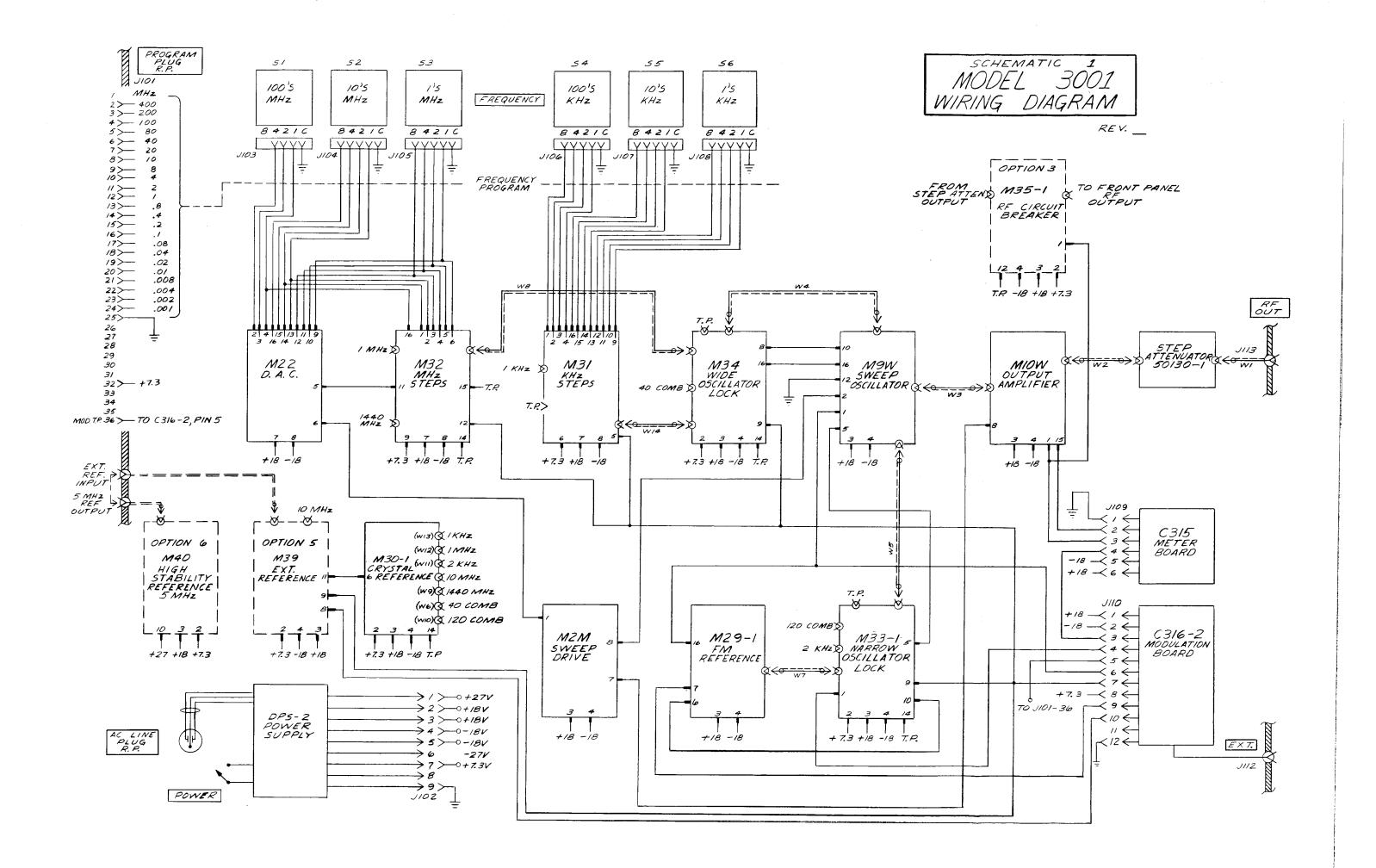
Factory adjusted part.

LEVEL Denotes a front-panel device.

LEVEL Denotes a rear-panel device.

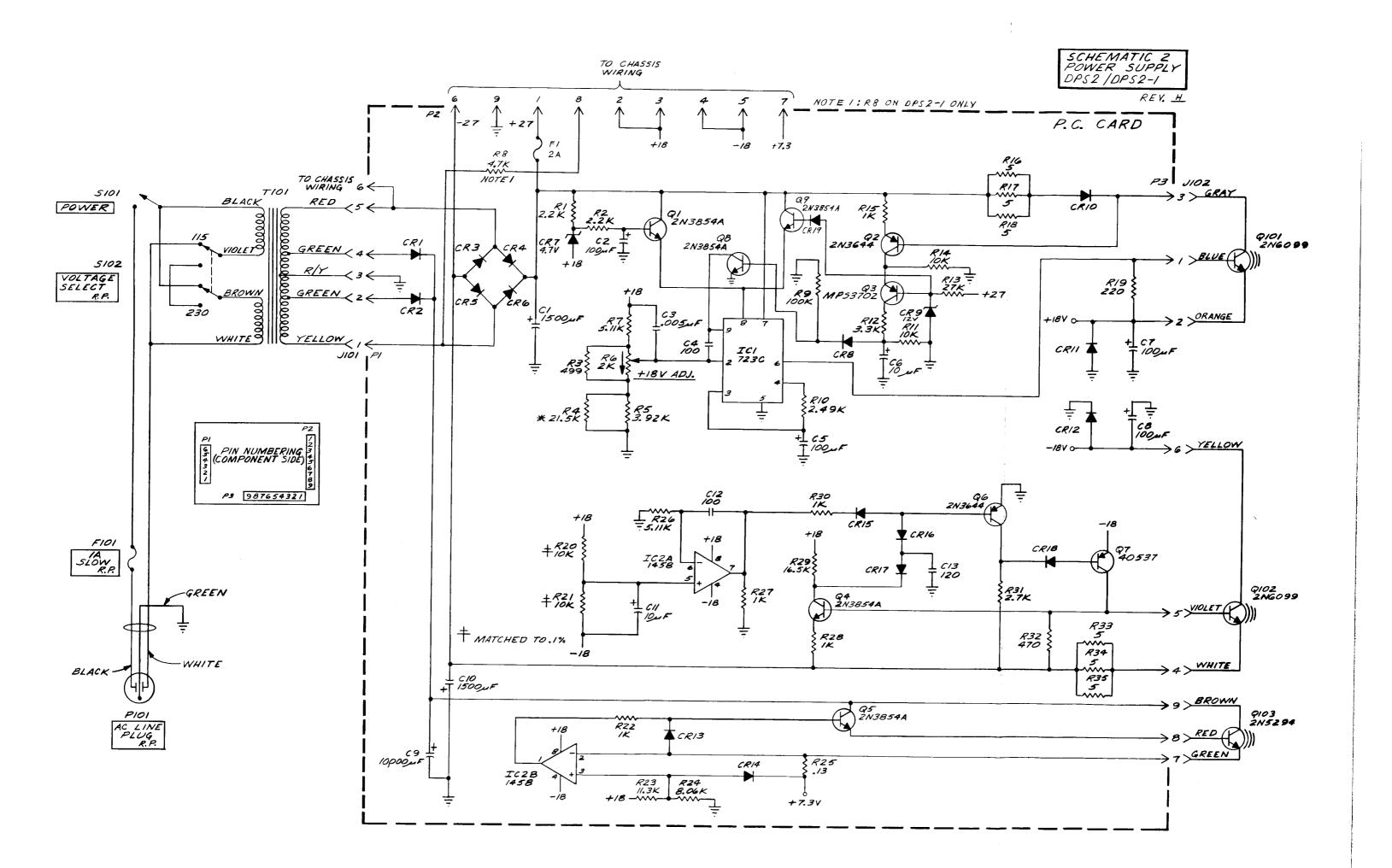
Denotes a PC board adjustment or accessible module adjustment.

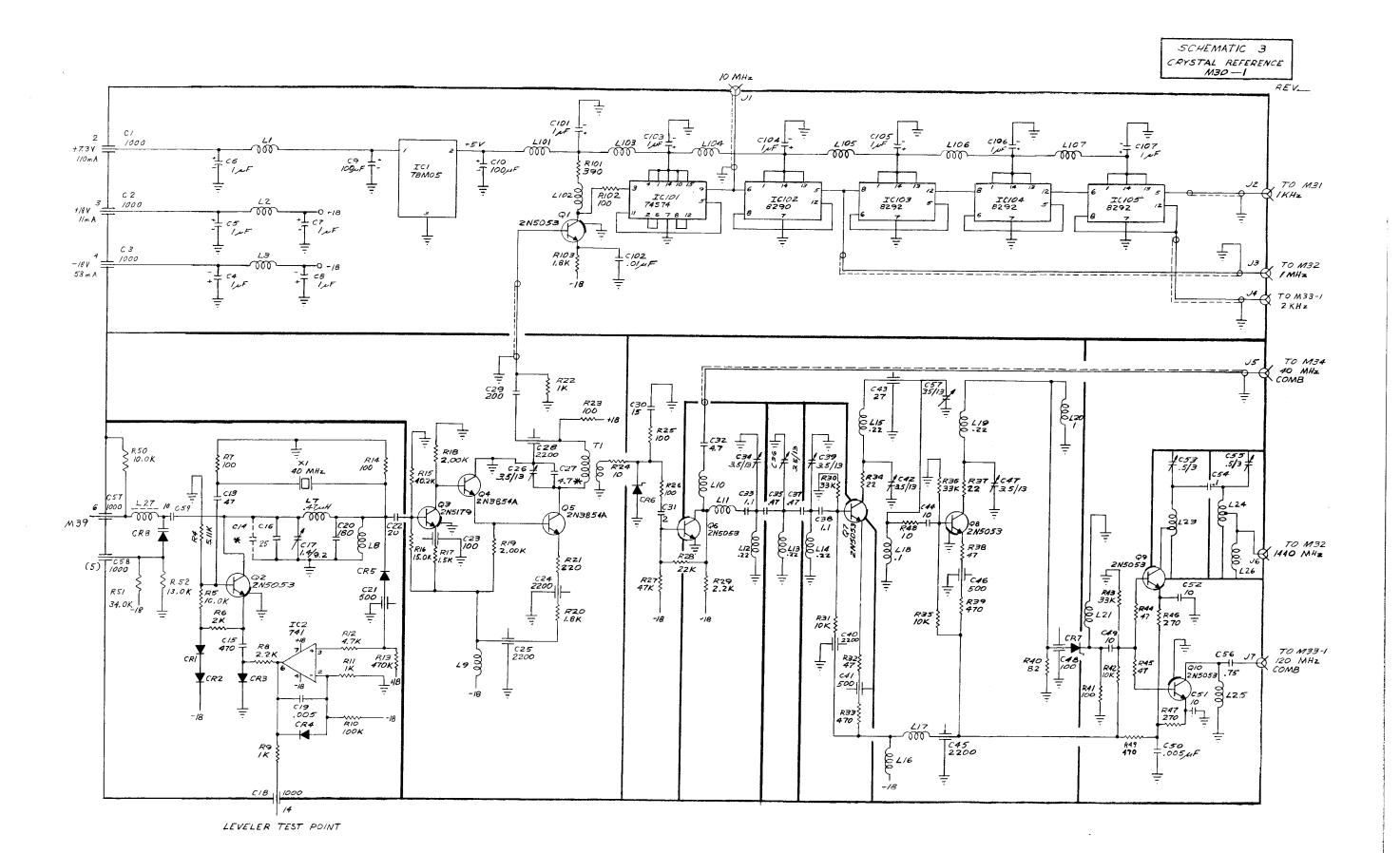
Denotes an internal module adjustment not accessible without removing module cover.

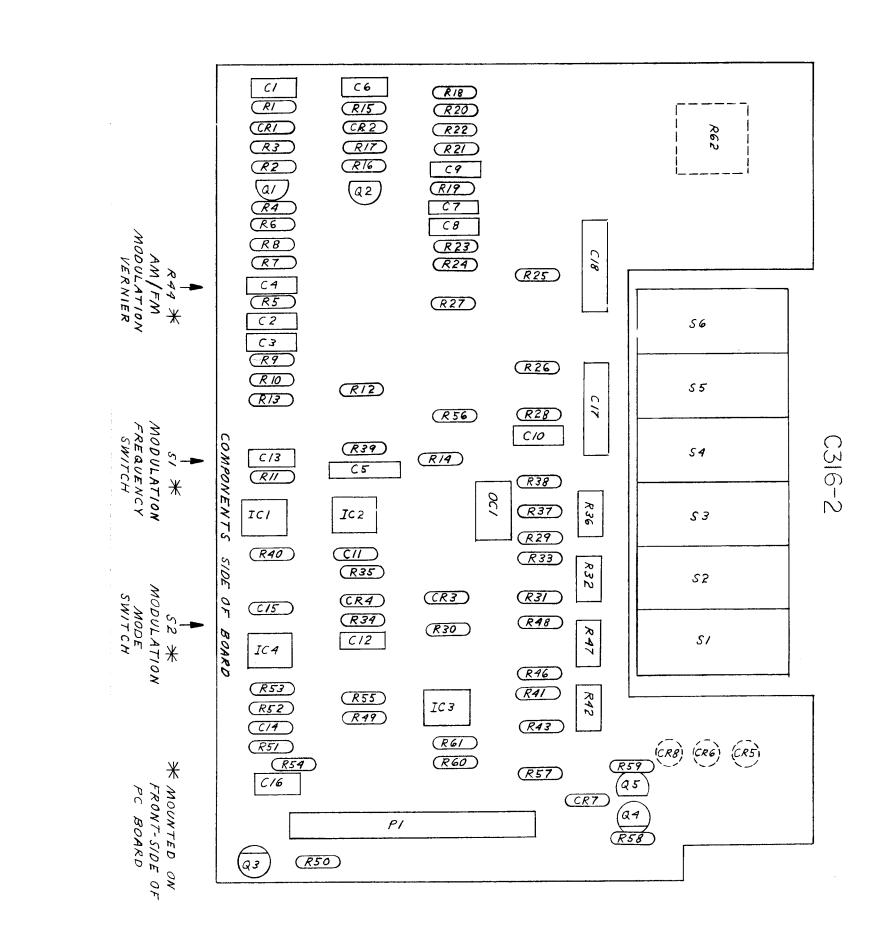

SCHEMATICS Model 3001

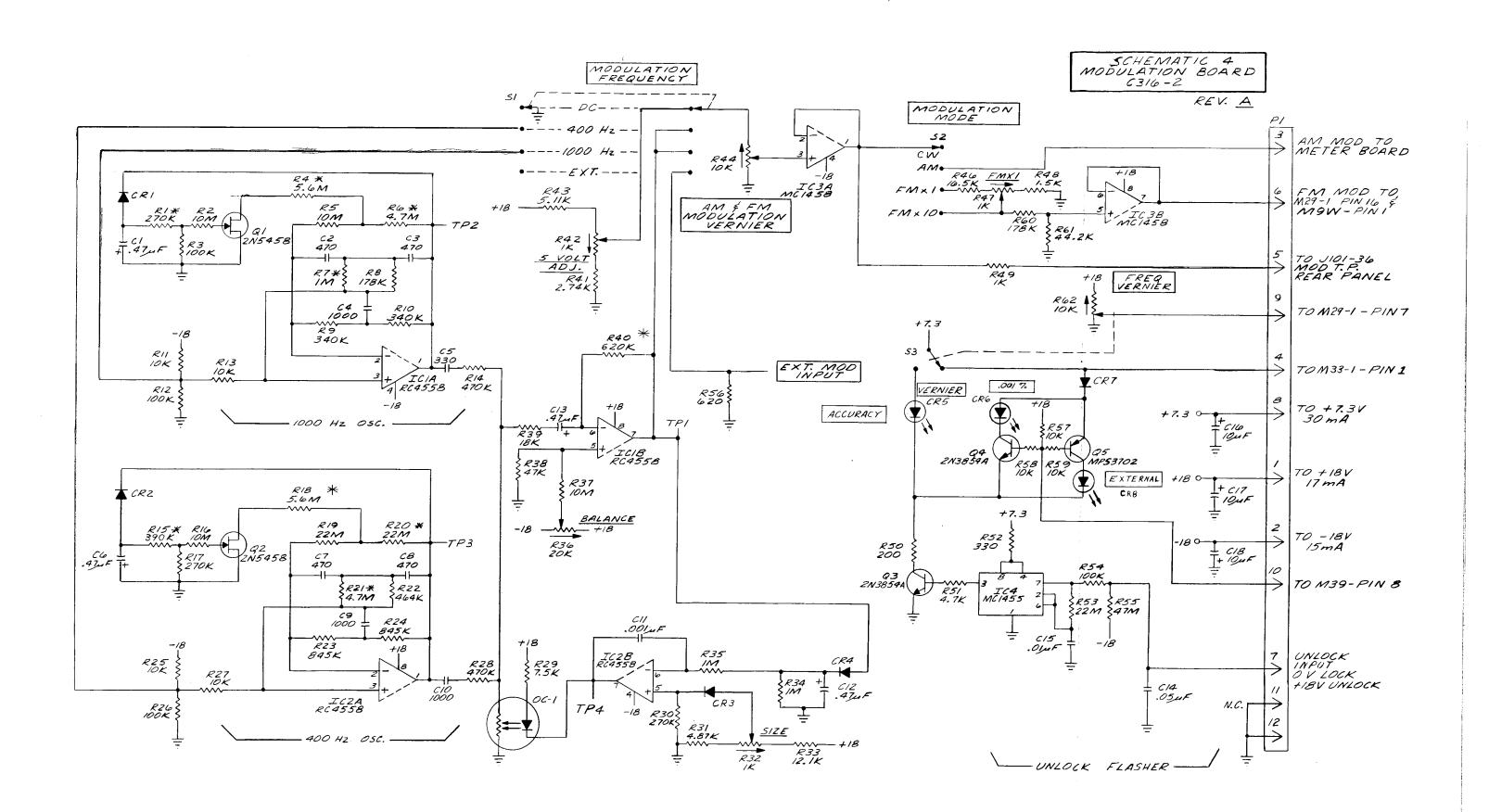
7.3 ABBREVIATION CODE

A	Assembly	IF	intermediate frequency	Ω	ohm
Α	ampere	J	jack	OC	opto coupler
AC	alternating current	K	relay	P	plug
С	capacitor	kHz	kilohertz	pр	peak-to-peak
CR	diode	$\mathbf{k} \Omega$	kilohm	рF	picofarad
CW	continuous wave	kV	kilovolt	Q	transistor
CW	clockwise	kW	kilowatt	R	resistor
dB	decibel	L	inductor	RF	radio frequency
dBm	decibel referred to 1 mW	MHz	megahertz	RMS	root-mean-square
dBmV	decibel referred to 1 mV	$\mathbf{M}\Omega$	megohm	R.P.	rear panel
DC	direct current	μF	microfarad	S	switch
DS	indicating device, lamp	μA	microampere	T	transformer
F	farad	μH	microhenry	TP	test point
F.P.	front panel	M	meter	V	volt
H	henry	mA	milliampere (VA	voltampere
Har	harmonic	mΗ	millihenry	W	watt
Ηz	hertz	mV	millivolt	X	crystal
IC	integrated circuit	mW	milliwatt		

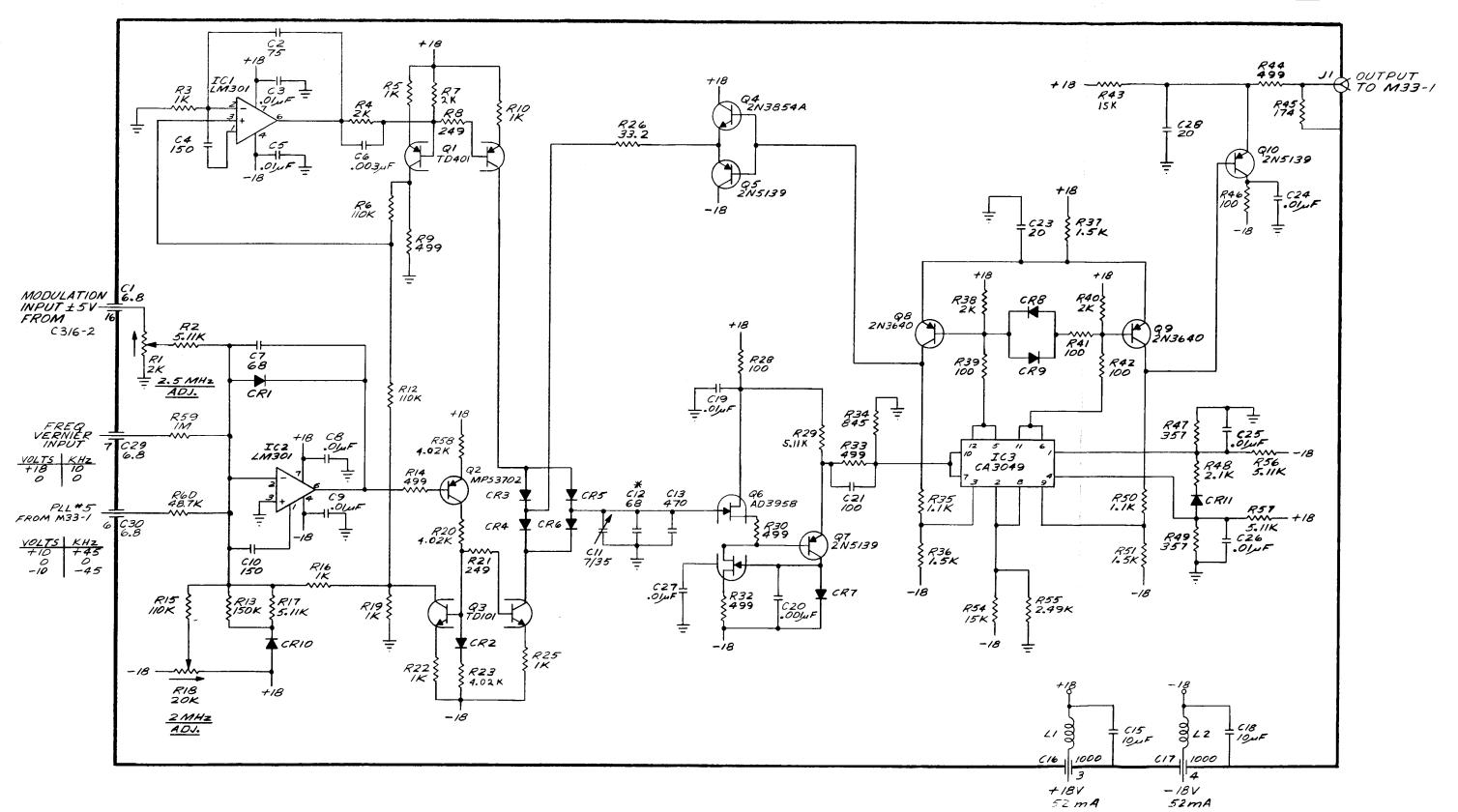

7.4 SCHEMATIC INDEX

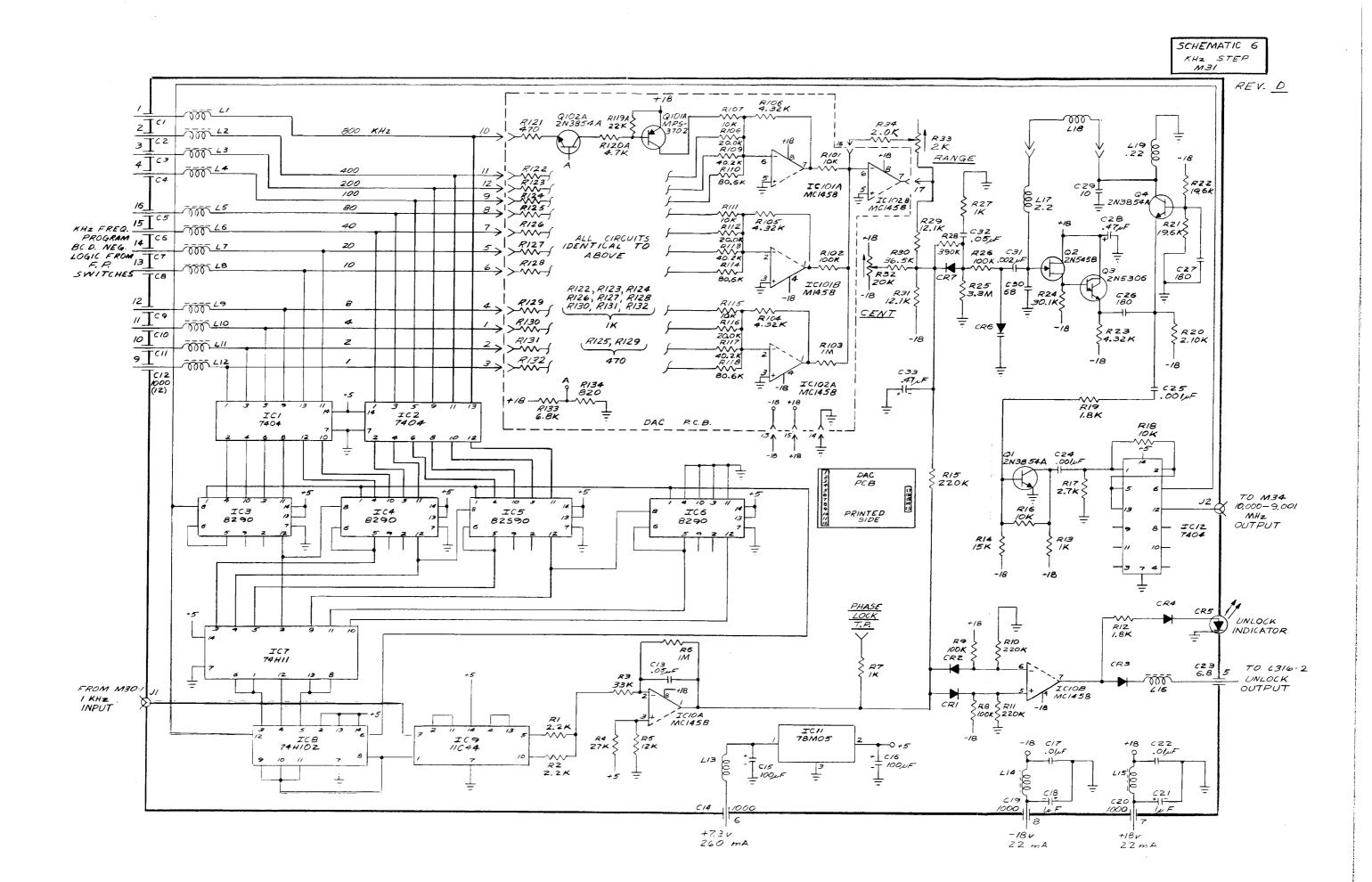

ASSEMBLY	<u>NAME</u>	SCHEMATIC NO.	PARTS LIST: PAGE
C315	Meter Board	13	6–4
C316-2	Modulation Board	4	6–5
DPS-2	Power Supply	2	6-7
M2M	Sweep Drive	9	6-10
M9W	Sweep Oscillator	12	6-11
M10W	Output Amplifier	14	6-14
M22	DAC	8	6-16
M29-1	FM Reference	5	6-17
M30-1	Crystal Reference	3	6-19
M31	kHz Steps	6	6-23
M32	MHz Steps	10	6-26
M33-1	Narrow Oscillator Lock	7	6-31
M34	Wide Oscillator Lock	11	6-33
Model 3001	Wiring Diagram	1	6-3



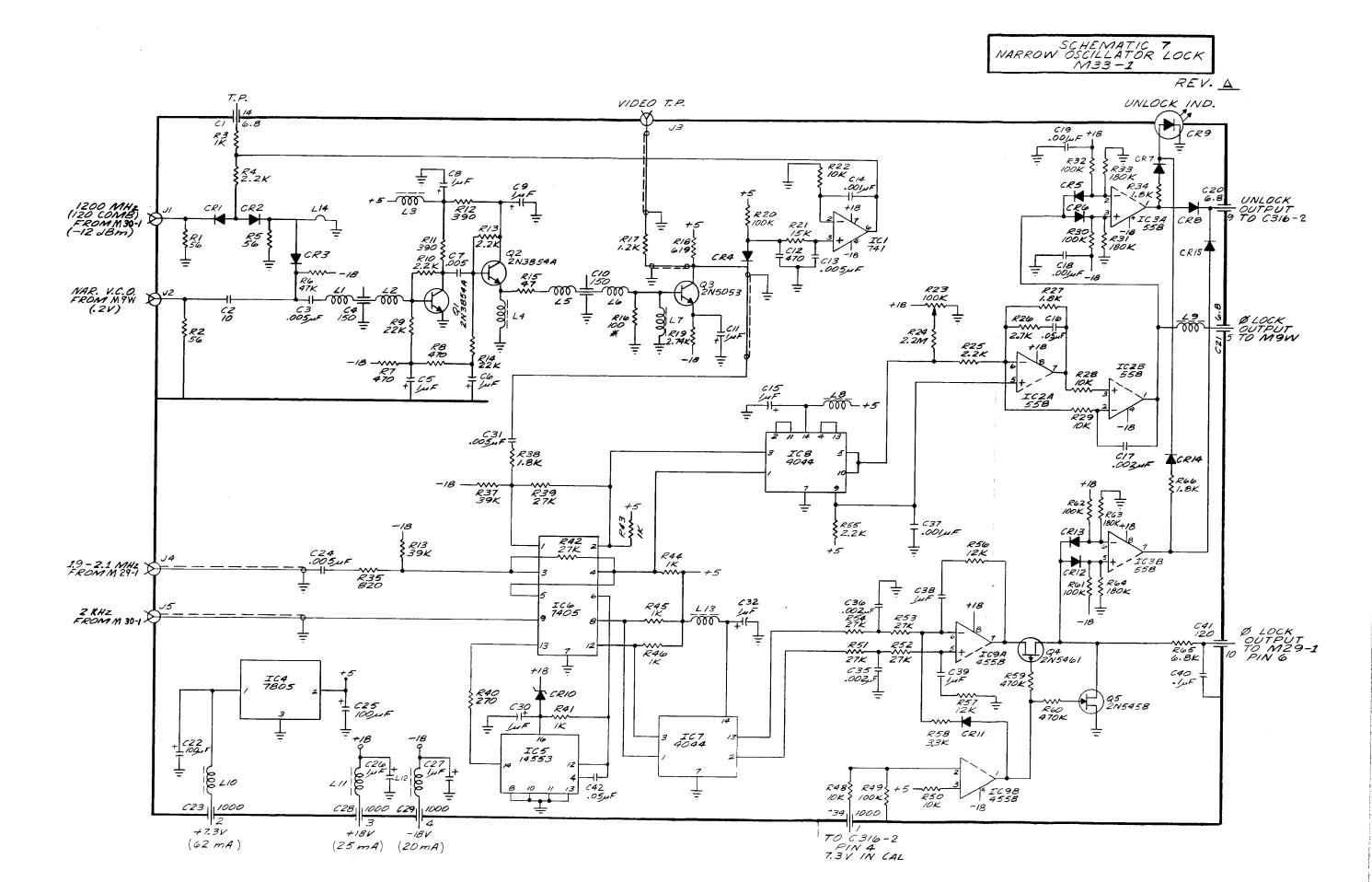

COMPONENT SIDE OF BOARD

C352

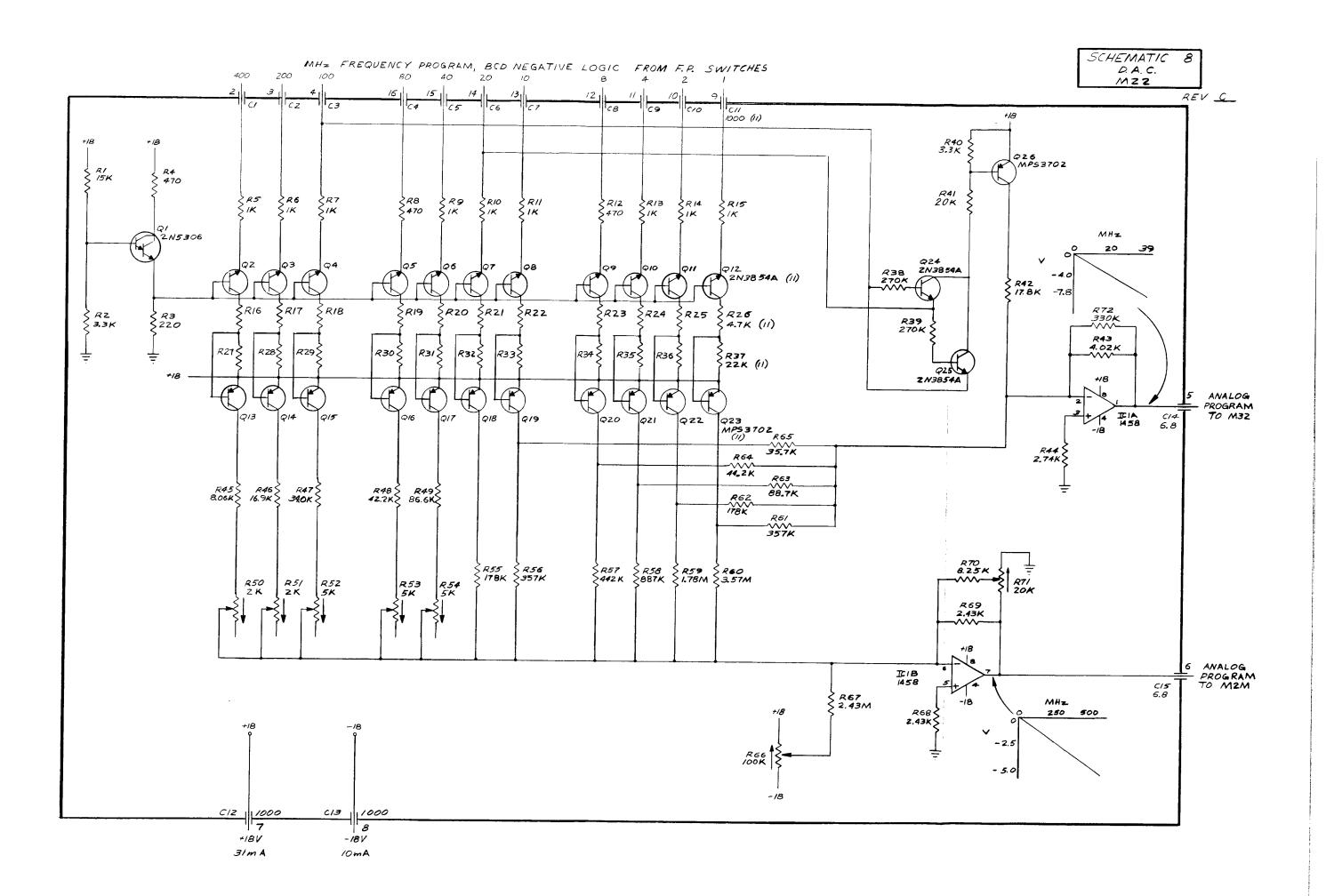




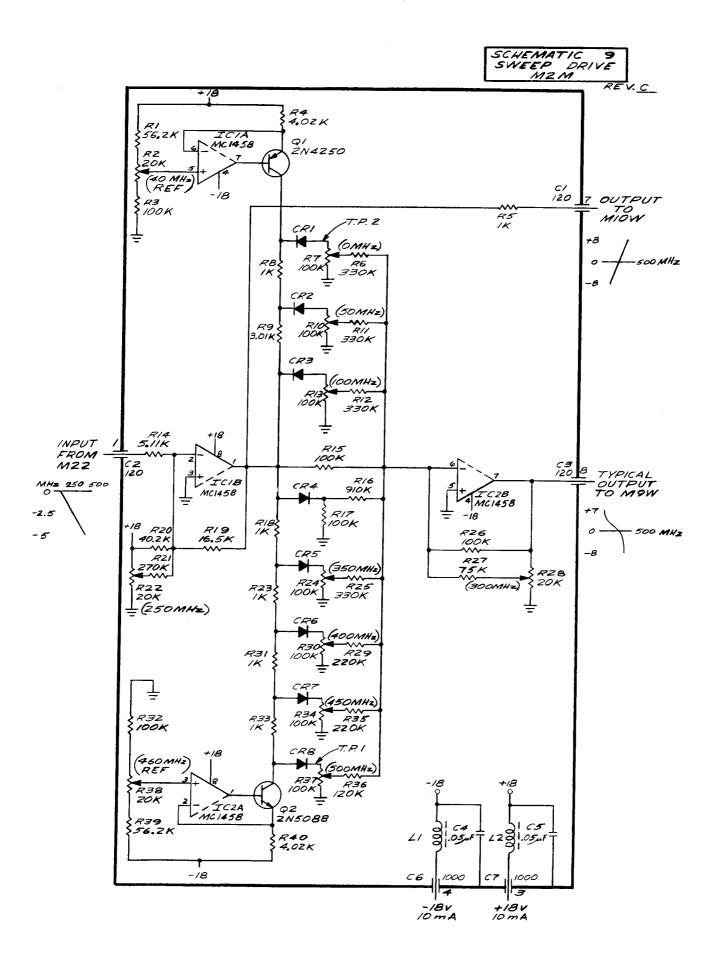
			ŕ



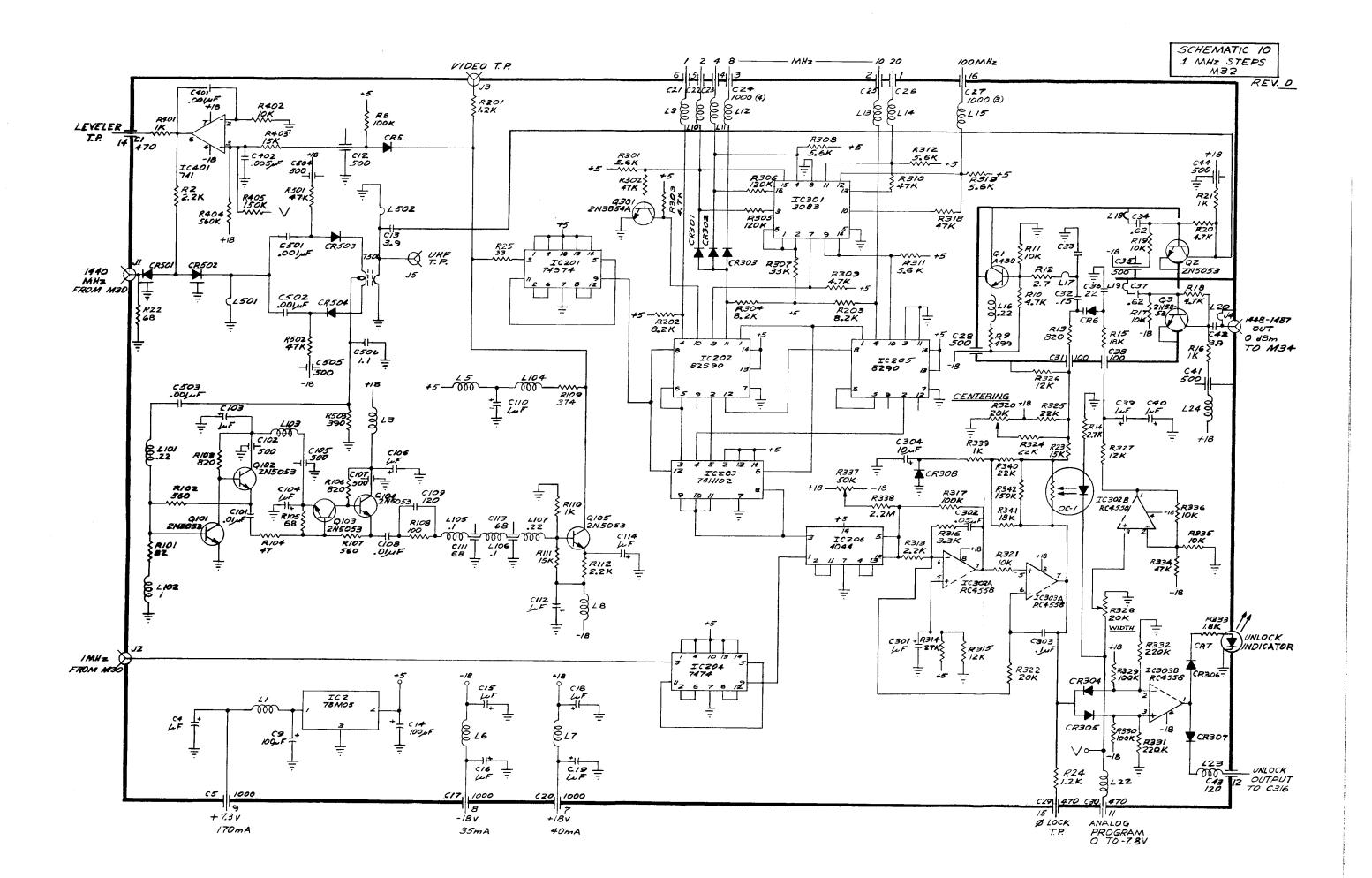
				1
		•		
				i
			•	
				The Colonia
				and the state of t
				eendirong - sec 6
				100
				2.2 W 1.7 W
	!			1
				1 m m 7 (13.00
				8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
				Section of the sectio
				1
				1 1 1 1
				1 5 7 8
				:



		1
		,
•		
		¥
		:
		The state of the s
		1. T
		, d. _{(**}
		4) -
		The second secon

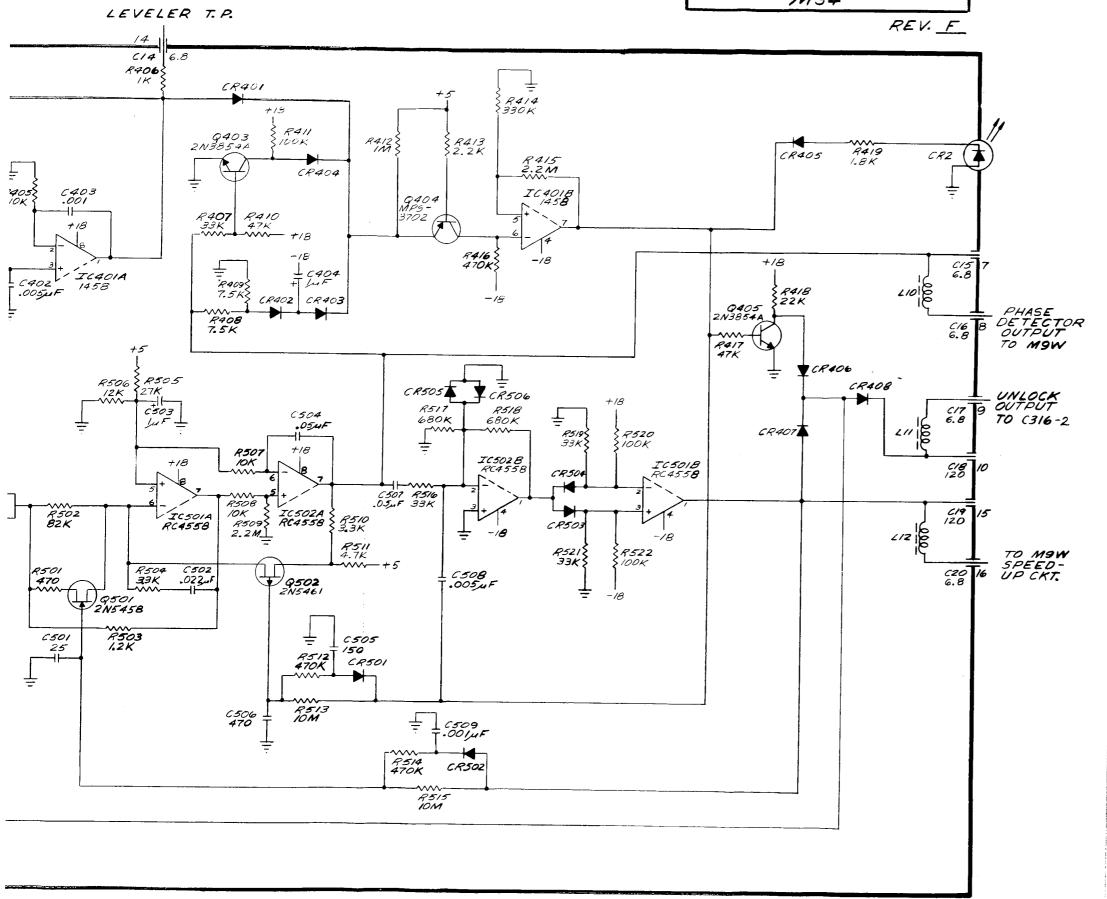

						M22) -					
	RSO	R51	R53	R53	R54		(R70)	(<i>R</i> 69)	R11		R66	
	(R#5)	<i>R46 R47</i>	R/7	R42	R44	(840)		Ic1		(A67)	Re	8
42		(PA)		<u>\$55</u>	756 765	847 841	(R61)	(R63)	(R64)	R58	(454) (860)	
,	610	1	Q 15	90	(TIQ)	(SIG)	(020)	(021)	Q22	(623)		
83	R27 R16	R28 R/7	R29 R18	R30	K20	(R32) (R33) (R33)	K34 K34	R35	R24) R36)	(K23)	(8)	(Q25)
(Q 2	(8)	(a)	(S)	8	(S) (S)	(%			(S)	<i>K38</i>	
	(45)	(86)	(87)	88	\display \(\langle \)	(K)	(R12)	(R/3)	(8/4)	(R15)	(838)	

COMPONENT SIDE OF PC BOARD

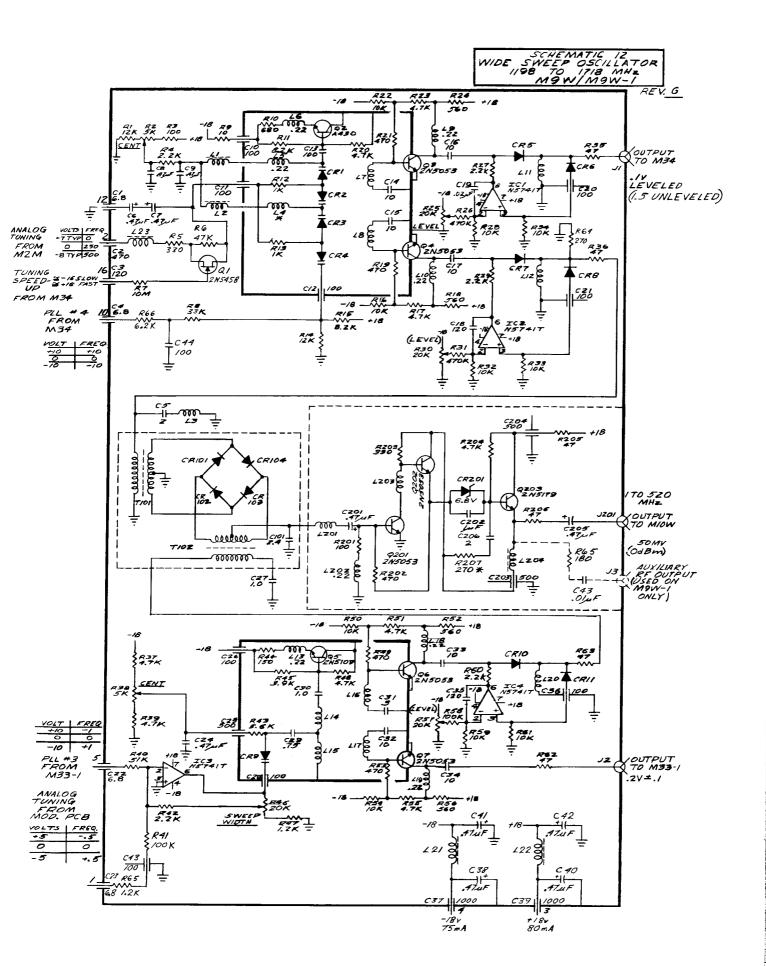


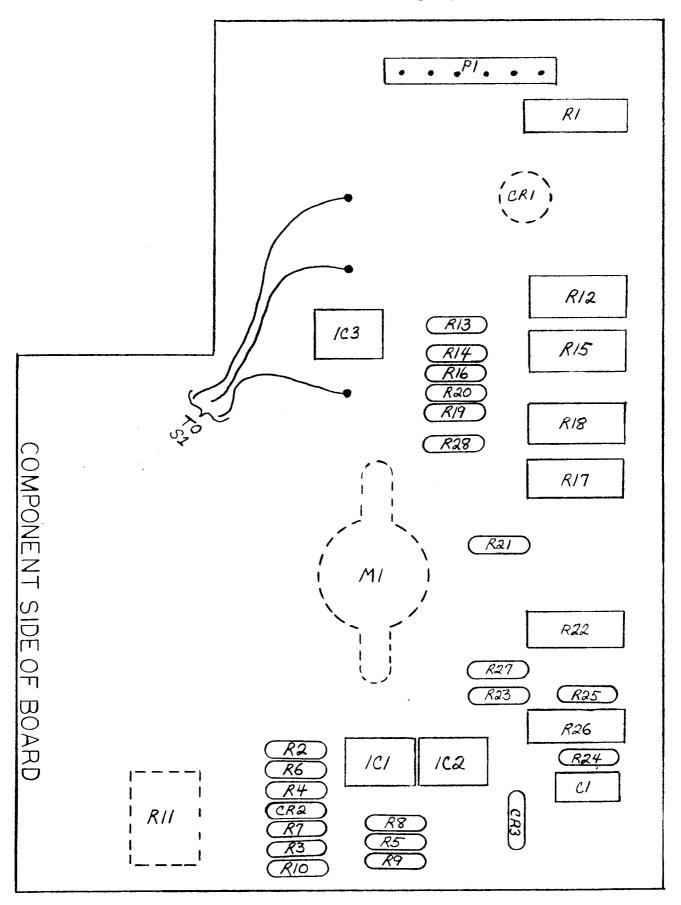
,		Ma	2M		
R28	(K/7)	K13	810	k7	R22
R26 R27 R.27	(CR#) (CR#)	(CK3) (CK3) (CK3)		$\begin{pmatrix} K8 \\ K6 \\ CRI \end{pmatrix}^{TR} 2$	(A21) (A22)
415	(425) (245) (423)	(K29) (CK6) (R3/)	(R35)	(436) (788)	1.7.1
	R24	<i>R30</i>	R34	K37	
22	D o		RI9)	ğ
88		ICZ	ICI	## [**	<i>R</i> 2
	R39 R32		3 23	(R) (R3)

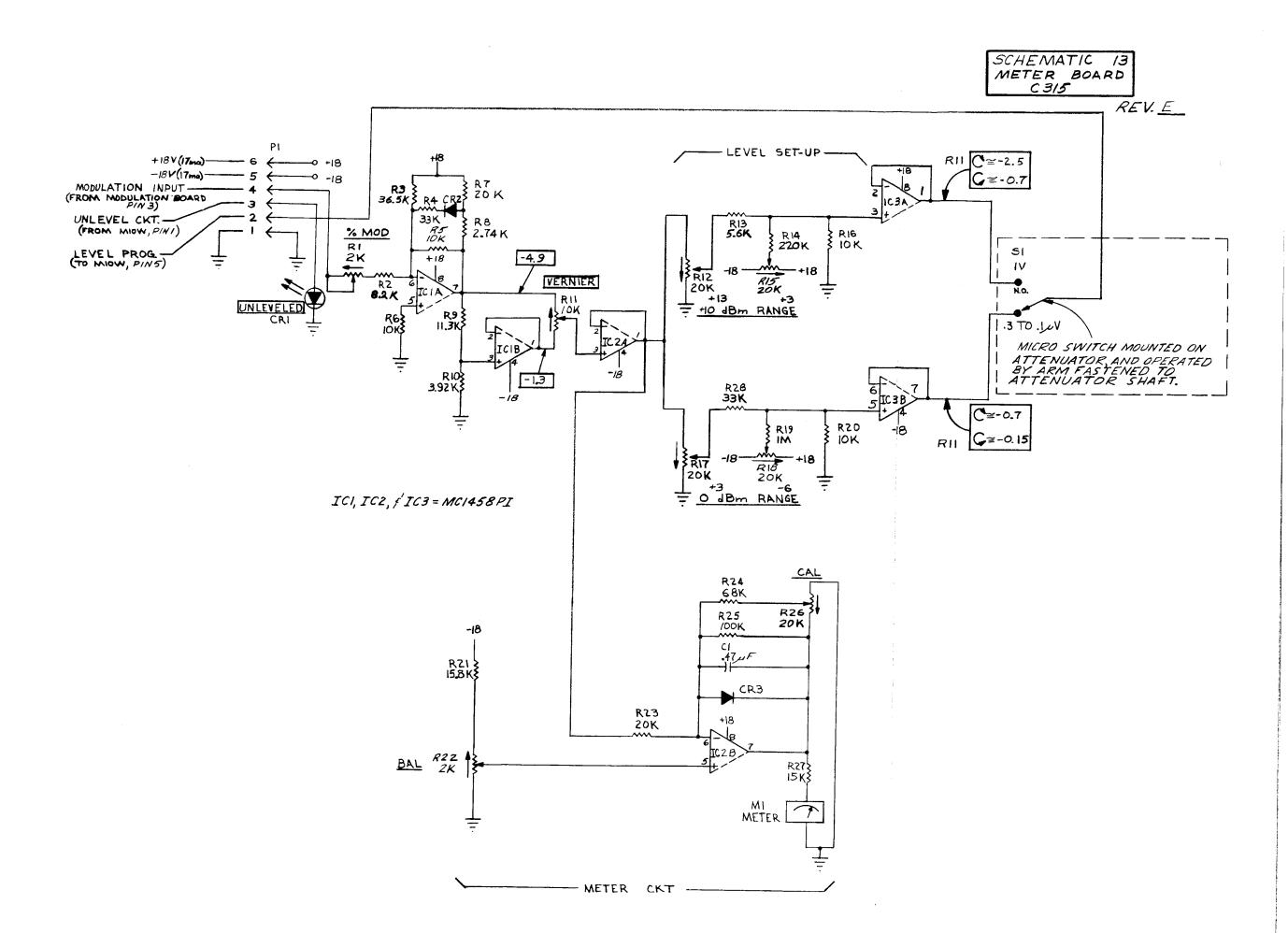
COMPONENT SIDE OF PC BOARD

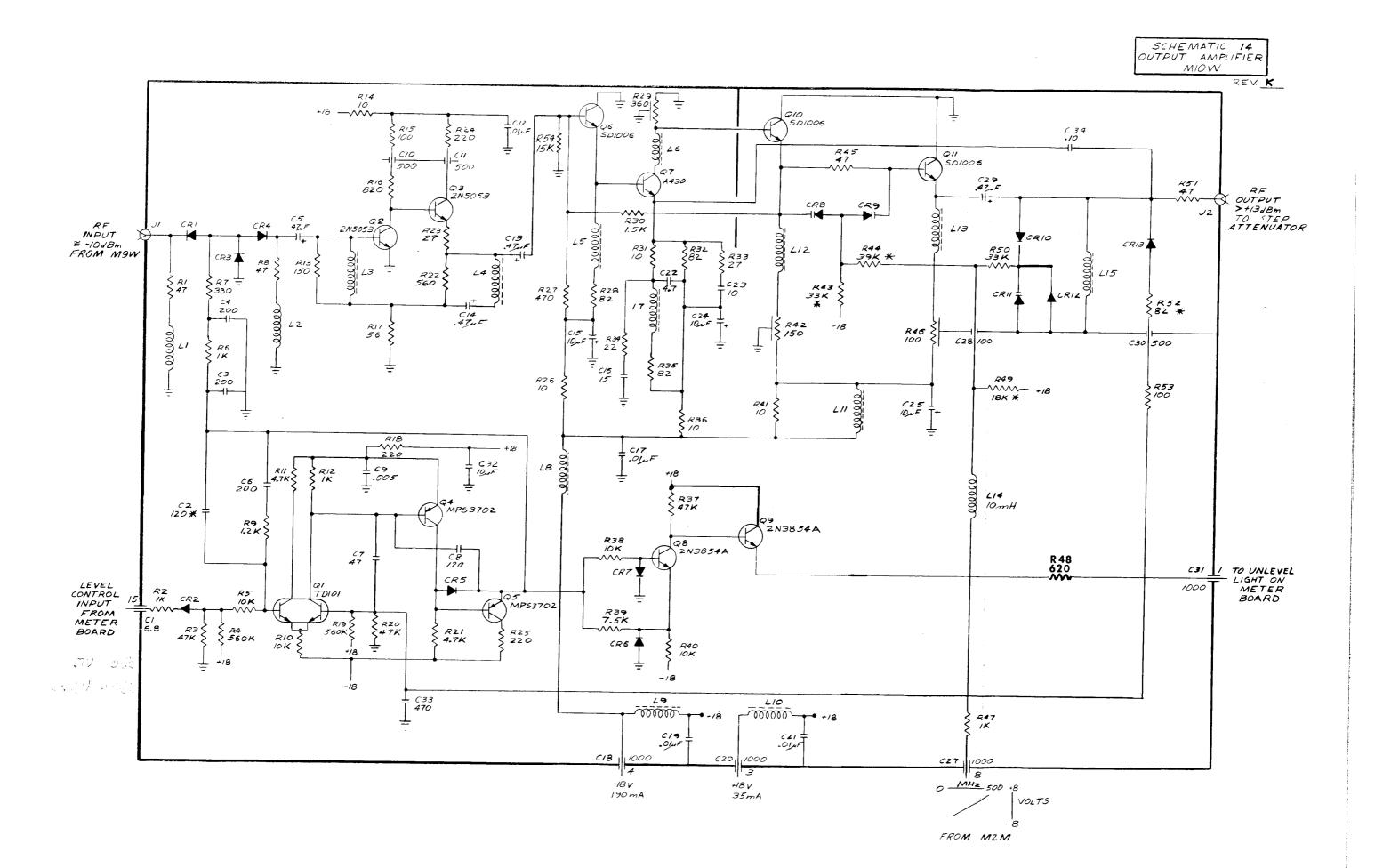

		- - - -

		21 2 4 3 2 5


		;		


		-	


WIDE SCHEMATIC II
WIDE OSCILLATOR LOCK
M34


		•		
i				

			1
	-		
	÷		

SECTION SECTIONS

8.1 INTRODUCTION

This section contains descriptions of engineering updates as well as corrections to any errors in the manual. Also in this section is the necessary information to document the options which have been ordered with this instrument.

8.2 MANUAL CHANGES

WAVETEK'S product improvement program incorporates the latest electronic developments into these instruments as rapidly as development and testing permit. Due to the time required to document and print these instruction manuals, it is not always possible to include the change information in the current printing. The following changes should be made to this manual:

MODEL 3001 CHANGES

OPTION 7 (Low RF Leakage) is now available. M31A replaces M31 (see attached addendum).

PAGE

4–19	Section 4.12 - Specification should read "DC to 20 kHz (± 3 dB bandwidth)".
4–21	Section 4.12 - 6 Third sentence should read, "It should read between -3 and -9 dB."
4–25	Section 4.15 - 3 Second sentence should read, "the meter range switch to 100".
DPS2 PL	The Wavetek part numbers for C9 and C11 should read: C9CE122-310

M22 LAYOUT Q24 and Q25 are reversed.

C11----CE105-010

M9W PL/SCH "Parts added for M9W-1" - C43 should be C45, R65 should be R67.

M30-1 PL/SCH There are 2 capacitors referenced "C40" and 2 capacitors referenced "C57". Therefore change:

C57....Var cer, 3.5-13pF....CV101-013 to C60 and delete:

C40....Cer disc, .005uF....DE103-250

M32 PL/SCH R112 is now 1.5 k Ω , and should read: R112....Fixed comp, 1.5 k Ω , $\pm 10\%$RC104-215....A-B....CB1521 Also R404 and R405 are now * values.

M9W SCH

J201, - Output level should read "50 mV (-10 dBm)."
Also, "PPL #3 VOLT/FREQ" table at the lower left should read

FREQ
-2
0
+2

8.3 OPTIONS

Refer to Section 1.3 for a list of the options available with this instrument. The option documentation includes the operation, theory of operation, maintenence, list of replaceable parts, and schematics.

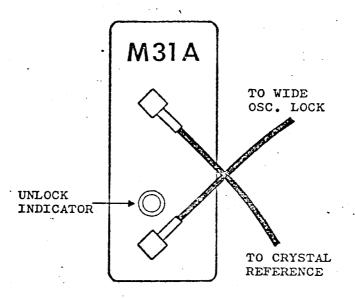
M31A SUBSTITUTION

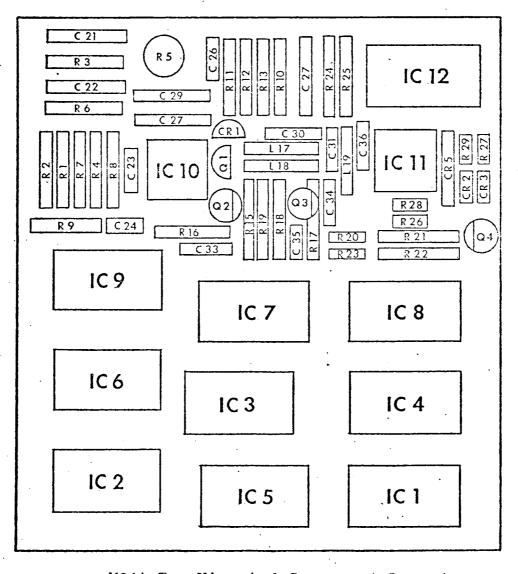
In this instrument, module M31 has been replaced by module M31A. The M31A is a pin-for-pin replacement for the M31, but is an improvement on it. The changes caused by this substitution are detailed below.

All references to M31 are now to M31A.

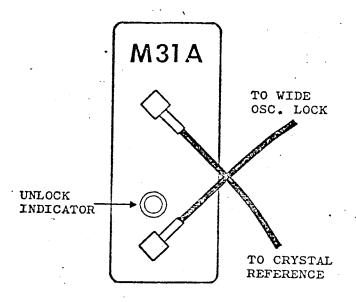
Section 3.12.1 VCO

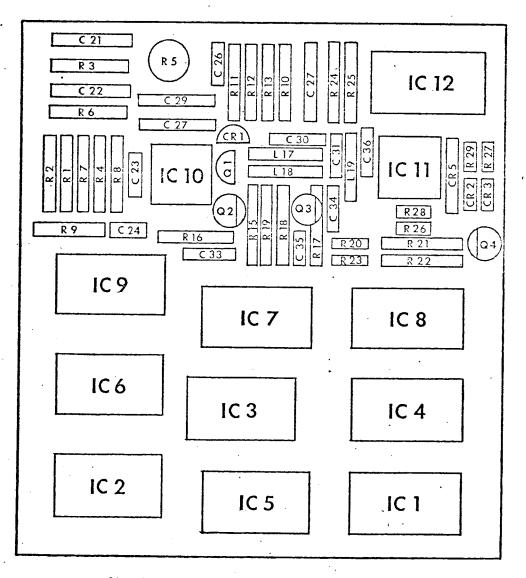
The output frequency is generated by a Voltage Controlled Oscillator which is phase locked within the module.


Section 3.12.2 D/A CONVERTER


This section is deleted.

Section 5.3.5 PLL #1 Adjustment M31A


No adjustment of module M31 is necessary.


Following are the Top View, Component Layout, Parts List, and Schematic for module M31A.

M31A Top View And Component Layout

M31A Top View And Component Layout

M31A SUBSTITUTION

In this instrument, module M31 has been replaced by module M31A. The M31A is a pin-for-pin replacement for the M31, but is an improvement on it. The changes caused by this substitution are detailed below.

All references to M31 are now to M31A.

Section 3.12.1 VCO

The output frequency is generated by a Voltage Controlled Oscillator which is phase locked within the module.

Section 3.12.2 D/A CONVERTER

This section is deleted.

Section 5.3.5 PLL #1 Adjustment M31A

No adjustment of module M31 is necessary.

Following are the Top View, Component Layout, Parts List, and Schematic for module M31A.

REFERENCE DESIGNATOR	S PART DESCRIPTION	ORIG-HEGR-PART-NO	MFGR	WAVETEK NO.	017/1
COT CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 C10 C11 C12 C13 C14 C15 C16	CAP, CER, F. T. 1000PF CF112-210	54-794-010-102P	SPEC	1510-30-8102	. 16
C17	CAP, ELECT, 100MF, 12V CE119-110	500D107G012CC7	SPR	1510-21-2101	1
C18	CAP, ELECT, 100 MF, 6V CE118-110	5000107G006CC7	. SPR	1510-21-1101	1
C19 C20 C25 C28 C32	CAP, TANT, 10MF, 25V	162D106×0025D0Z	SPR	1510-21-7100	6
C21 C22 C29	CAP.FILM,.12MF,250V 5%	60E124J250	PLSSY	1510-60-8124	3
C23 C24 C26	CAP, CER, 1MF, 50V, MONO TYPE 3400 CD114-510	3430-050-E105Z	AVX	1510-10-9105	3
C30	CAP, HICA, 1000PF, 500V CH101-210	D415-102J	ARC	1510-50-0102	1
C31	CAP, CER, 10PF, 1KV CD101-010	10700-010	SPR	1510-10-0100	1
C33 C34	CAP, HICA, 180PF, 500V CH101-118	DM15-181J	ARCO	1510-50-0181	2
C35 C36	CAP, CER, . 001HFD, 1KV C0102-210	5GAD10	SPR	1510-10-1102	2
CR01	MOT MV2301 TUNER DIODE	MV2301	мот	4803-02-0008	1 .
WAVETEK	TITLE KHZ STEPS MODULE	ASSEMBLY NO. 1114-00-0			REV
PARTS LIST	M31A :	PAGE: 1			

					· · · · · · · ·
					:
REFERENCE DESIGNATORS	PART DESCRIPTION	ORIG-MFGR-PART-NO	MFGR	HAVETEK NO.	QTY/P
CRO2 CRO3 CRO5	DIODE, DG109-140	1N4148	FCD	4807-01-0914	3
CR04	LED 0L000-001	NSL5046	NAT	4810-02-0001	· 1.
1001 1002 1012	IC, IC000-012	SN7404N	1-1	8000-74-0400	3
1003 1005 1006	IC, IC000-016	N8290A	SIG	8000-82-9000	3
1004	10,10000-017	N82390A	SIG	8000-82-9001	1
1007	10,10000-019	SN74H102N	7-1	8007-41-0200	1
IC08	10,10000-018	N74H11A	SIG	8000-74-1100	1
1009	10,10000-029	11C440C, ONLY	FCD	8000-11-4400	1
1010	10,10000-005	RC4558DN	RAY	7000-14-5800	1
IC11	10,10000-002	N5741CV	\$1G	7000-57-4100	1
1013	10,10000-011	78M05UC ·	FCD	7000-78-0500	1
J01 J02	CONN JF000-005	37JR116-1	s-c	2110-03-0002	2
L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16	FERRITE CHOKE LA009-010	T1255-2	нүт	1810-05-0002	16
L17	CHOKE, 2.2MH, 10% LA005-R22	08N2R2K	ASE	1810-03-0229	1
Lis	CHOKE .47MH 10% LA005-R04	08NR47K	ASE	1810-03-0478	1
WAVETEK TITL	Z STEPS HODULE	ASSEMBLY NO. 1114-00-0		• .	REV
PARTS LIST N3	1 A ,	PAGES 2			

REFERENCE DESIGNATORS	PART DESCRIPTION	ORIG-MFGR-PART-NO	MFGR	WAVETER NO.	OTY/P
L19	CHOKE .22MH 10%	OBNRSZK	ASE	1810-03-0228	1
001	TRANS QA054-580	2N5458	нот	4901-05-4580	1
002	TRANS QA053-060	2N5306	GE	4901-05-3060	1
003 004	TRANS QA038-541	2N3854A	. G-E	4901-03-8541	2
R01 R02	RES,C,1/4H,5%,4.7K RC103-247	CF1/4-4.7K	ASE	4700-15-4701	2 .
R03 R04 R06 R07 R26	RES,C,1/4W,5%,30K RC103-330	CF1/4-30K	ASE	4700-15-3002	5
ROS	POT, 2K, RP144-220	91ARZK	BEK	4610-00+4202	1
R08 R27	RES,C,1/4W,5%,47K RC103-347	CF1/4-47K	ASE	4700-15-4702	2
209	RES,C,1/4W,5%,68K RC103~368	CF1/4-68K	ASE	4700-15-6802	i
R10 R11 R14	RES,C,1/4W,5%,6.8K RC103-268	CF1/4-6.8K	ASE	4700-15-6801	3
212	RES,C,1/4m,5x,3.3K PC103-233	CF1/4-3.3K	ASE	4700-15-3301	1
13 R22 R25	RES,C,1/4W,5%,10K RC103-310	CF1/4-10K	ASE	4700-15-1002	3
15	RES,MF,1/8W,12,30.1K RF213-301	MF55K-30.1K	ASE	4701-03-3012	1
VAVETER	TITLE KHZ STEPS MODULE	ASSEMBLY NO. 1114-00-0	143		REV
PARTS LIST	M31A .	PAGE: 3	•		,
					
					•

REFERENCE DESIGNATOR	S PART DESCRIPTION	ORIG-MFGR-PART-NO	MFGR	HAVETEK NO.	QTY
R16	RES,MF,1/8H,1%,4.32K RF212-432	4F55K-4.32K	ASE	4701-03-4321	1
R17,R18	RES,MF,1/8W,1%,19.6K RF213-196	MFS5K=19,6K	ASE	4701-03-1962	2
R19	RES, MF, 1/8W, 1%, 2.10K RF212-210	MF55K-2.10K	ASE	4701-03-2101	1
R20 R30	RES,C,1/4W,5%,1.8K RC103-218	CF1/4-1.8K	ASE	4700-15-1801	2
R21	RES,C,1/4W,5%,1K RC103-210	CF1/4-1K	ASE	4700-15-1001	1
R23	RES,C,1/4W,5X,15K RC103-315	CF1/4-15K	ASE	4700-15-1502	1
R24	RES,C,1/4W,5%,2.7K RC103-227	CF1/4-2.7K	ASE	4700-15-2701	i
R28	RES,C,1/4W,5%,160K RC103-416	CF1/4-160K	ASE	4700-15-1603	1
R29	RES,C,1/4W,5%,20K RC103-320	CF1/4-20K	ASE	4700-15-2002	i
9	CABLE, SEMI RIGID, 50 .0560D, WC000-004	MA50056	PRSN	6011-40-0003	3
5	PC BOARD, Z419	Z419	H-I	1710-00-1120	1
3	DECAL, CAN M31A	CD8-125	W-1	2410-04-0236	1
WAVETEK PARTS LIST	TITLE KHZ STEPS HODULE H314	ASSEMBLY NO. 1114-00-0	143		REV
	,	PAGE: 4			

MODEL 3001 OPTION -3

RF Output Protection

1. INTRODUCTION

Option "-3" is a circuit breaker in the RF output system of the instrument. This prevents damage to the RF output system in the event that large RF signals are fed into the signal generator while testing a transceiver. In addition to the RF protection, the option contains a DC block which will prevent damage to the attenuator if the RF output is connected to a circuit operating at a DC potential.

2. SPECIFICATIONS

Frequency Range	1 to 520 MHz
Insertion Loss	<.2 dB
VSWR	< 1.15
Trip Time	<2 msec
RF Trip Voltage	≃ .7 W
Max RF	50 W
DC Blocking Voltage	100 Volts

OPERATING INSTRUCTIONS

If an external RF voltage of approximately 6 V RMS or more is accidentally applied to the instrument's RF output connector, an internal switch in series with the RF output will open. This prevents damage to the instrument's attenuator or output amplifier. This open switch will be indicated on the front panel by the flashing of the "unlevel" light. Once the switch is tripped, it will latch in the open position and remain Also, a combination open until reset. of a high mismatch, high output level (over .1 V) and changing frequency can cause the circuit breaker to trip.

After removing the RF signal causing the overload, the switch can be reset

by momentarily turning the front panel AC power switch to the off position.

NOTE: Normal operation of the "unlevel" light is a steady glow if the instrument is unleveled. If the circuit breaker is tripped while the instrument is unleveled, the "unlevel" light will vary in intensity instead of flashing on and off.

4. THEORY OF OPERATION

Figure 1 is a block diagram of the RF circuit breaker. This block along with the overall schematic contained in Section 7 should be used to follow the information contained in this section.

With the instrument's AC line switch set to its "off" position, relay Kl is in it's normally open position. This prevents any damage to the instrument while it is not in use. As soon as AC power is applied to the instrument, IC1 will compare the voltage from the RF monitor CR1 to a fixed reference voltage of approximately 5 V. As long as the output of the monitor CR1 is less than the 5 V reference voltage, the output of IC1 will be approximately +17 V. This positive output from IC1 turns on the relay This energized relay K1, driver Q1. thus completing the RF output circuit.

The positive output from IC1 also turns on Q2. This effectively grounds pin 7 of timer IC2, which is being operated as as astable oscillator. With pin 7 grounded, the timer is inoperative and its output, pin 3, is high. The high output from IC2 turns off Q3. This prevents any current flow to the front panel "unlevel" light.

If an external RF signal exceeding 6 V rms is applied to the instrument's RF output connector, the output from monitor diode CR1 will go above 5 V. This will produce a negative output from IC1. The positive feedback provided by R7 will latch IC1 in this state. The negative output from IC1 will turn off relay driver Q1. This causes relay K1 to return to its normally open position, re-

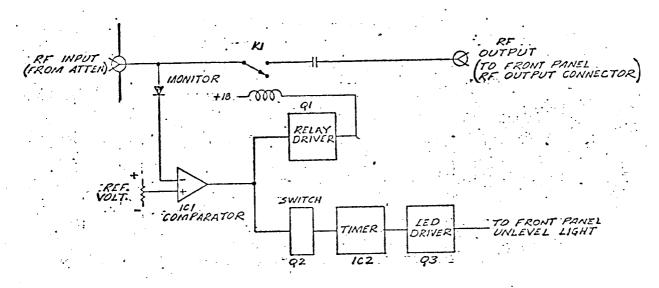


Figure 1. Block Diagram

moving the external RF signal from the instrument.

The negative output from IC1 also turns off Q2, thus removing the short on pin 7 of timer IC2. This allows the timer to operate as an astable oscillator. The output, pin 3 of IC2, then varies between 0 and 7 volts. This causes Q3, the LED driver, to supply current intermittently to the front panel "unlevel" light causing it to flash.

After the RF overload is removed, IC1 can be unlatched by momentarily removing AC power to the instrument.

5. OPERATION CHECK

The following procedure is recommended to insure proper operation of the protection device. The top cover must be removed from the instrument.

With the instrument operating normally in the CW mode, set the output level to +5 dBm. Connect a 50 ohm detector to the output of the signal generator. The DC output of the detector should be monitored on a suitable oscilloscope. Set the output frequency to 50 MHz.

The circuitry in the M35-1 is checked by pushing the momentary switch located on top of the module. This switch lowers the trip level of the module. While holding down the switch slowly increase the output of the 3001 using the vernier until the M-35-1 trips. This causes the circuit breaker to open, latch and the "unlevel" light to flash and the detected output displayed on the oscilloscope to go to zero. The circuit breaker can then be reset by momentarily turning the AC power switch off. The M-35-1 should have tripped at +7.5 dBm ±1 dB. Perform the same test at 520 MHz. It should then trip at an output level of +10.5 dBm ±2 dB.

The above procedure while not a complete performance check is considered adequate for most applications. Additional tests can be performed as desired. For example, insertion loss and VSWR can be checked in the same manner as any passive device. Also, if available, a high power RF signal source, set for an output of slightly over .7 W can be used to verify circuit breaker operation.

6. MAINTENANCE

The only maintenance for the RF circuit breaker is periodic testing to insure its operation. If a malfunction occurs, a trouble can be localized and repaired with the aid of the theory of operation and the schematic. If the problem is a defective monitor diode, care should be observed to keep lead length and position the same as the original diode.

Option -3 can be factory or field installed. The following procedure should be followed for field installation.

OPTION -3 FIELD INSTALLATION KIT

QTY	DESCRIPTION	PART #
1	RF Circuit Breaker Module	. M35-1
1	RF Cable	W1-A
1	RF Cable	W1-B
5	Pin Sockets	MC000-002
1	Wiring Harness	WY-OPT-3
1	$6/32 \times 5/8$ Screw	HS101-610

Install the pin sockets in the location shown in Figure 2. Install the harness as shown in Figure 2. The M35-1 module can then be installed as shown in Figure 3 and secured with the 6/32 hold-down screw, shown in Figure 2. Remove the front panel RF output cable (W1) and replace with W1A and W1B as shown in Figure 3.

Before use, the module should be tested by the procedure shown in Operational Check.

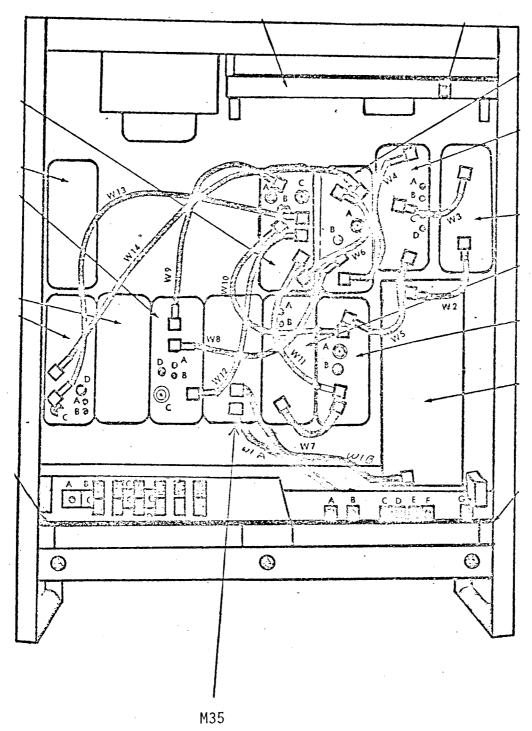
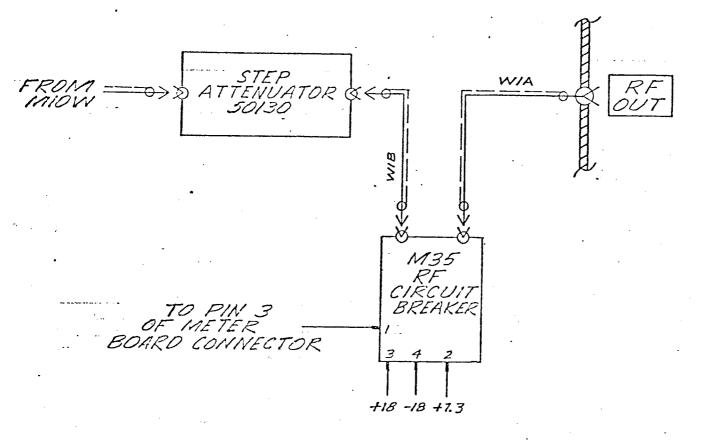
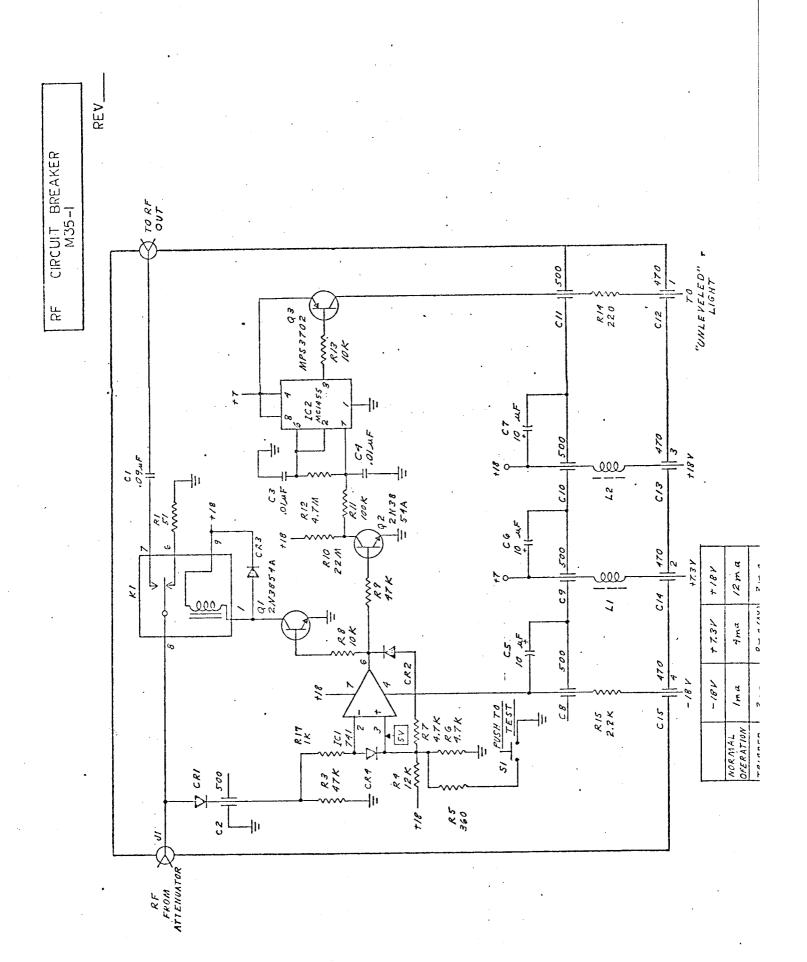
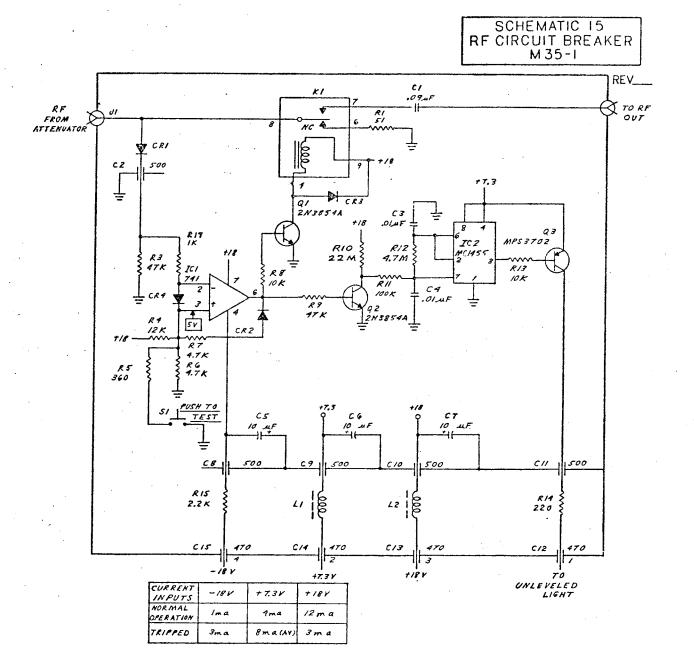
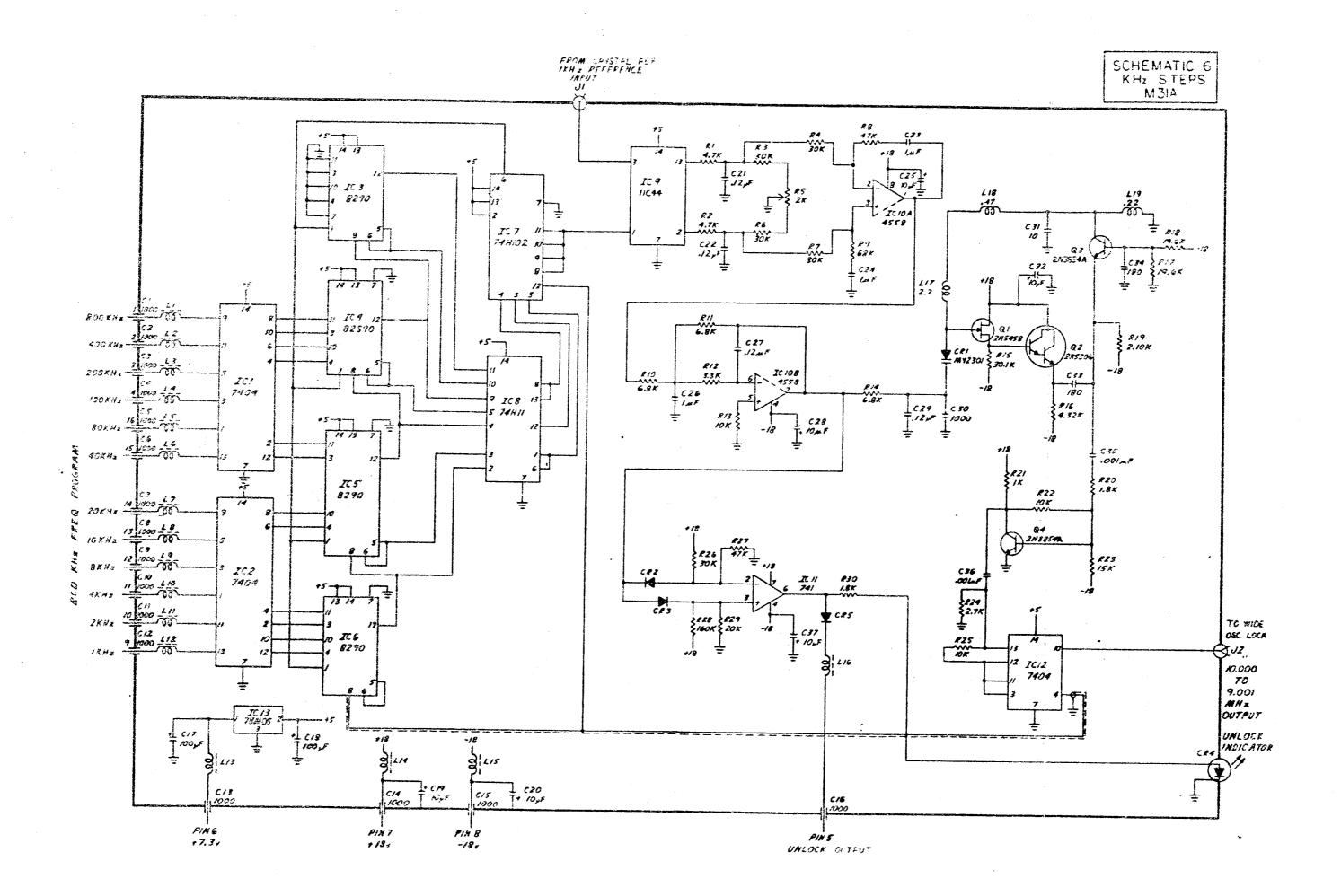
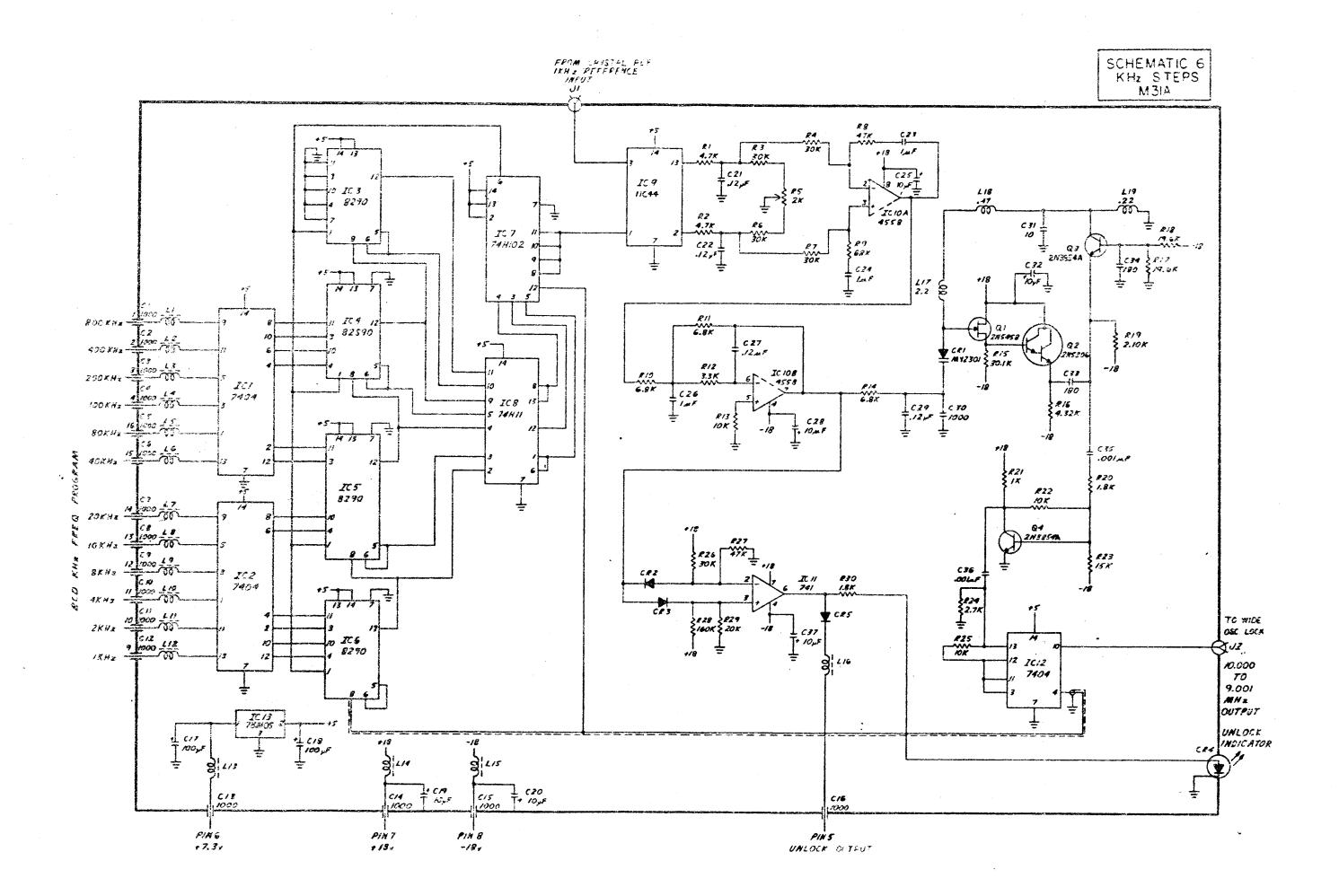





Figure 3 - RF Circuit Breaker Location


Model 3000 option -3, additional Wiring



REFERENCE	TOOD INTION	WAVETEK	MAN	UFACTURER	T
SYMBOL	DESCRIPTION	PART NO.	CODE	NUMBER	Q
iic ii	CADACTTORS				
1 "C "	CAPACITORS Cer ft, .09 µF, 100 V	CF111- 390	А-В	CLDO3DA- 903P	1
2,8,9,10,11,	Cer ft, 500 pF ±20%, 250 V	I -	AER	EF-4	5
12,13,14,15	Cer ft, 470 pF ±20%, 500 V	CF101-147	A-B	FA5C	4
3,4	Cer disc, .01 µF, ±20%, 100 V, Z5U	CD103-310	SPR	TG-S10	2
5,6,7	Ta, 10 μF, ±20%, 20 V	CE120-010	SPR	162D106X0- 025DD0	3
	•			023000	
"CR "	DIODES			1,70/10	
1,4	Germanium, Point Contact	DG100-341	1	1N34AS	2 2
2,3	Si, Junction, 100 PIV	DR000-001	DIO	1N4004	2.
"IC "	INTEGRATED CIRCUITS	#	276	*****	
1	Operational Amplifier, 8 pin, DIP		SIG	N5741V MC1455P1	1 1
2	Timer, 8 pin, DIP	IC000-006	MOT	MC1455P1	1
"J " 1,2	CONNECTORS (JACKS)				
1,2	SMA receptacle	JE000-007	0-S	OSM211	2
"K" "	RELAYS				
1"K "	2PDT RF Relay	MR000-003	G-E	3SCS5007K1	1
11 ^L 11	INDUCTORS				
$\frac{2}{1,2}$	10 Turn Toroid	LA006-010	W-I	LA006-010	2
				·	
"Q "	TRANSISTORS			·	
$\frac{Q}{1,2}$	NPN, Si	QA038-541	G-E	2N3854A	2
3	PNP, Si	QB000-009	MOT	MPS3702	1
				,	
"R "	RESISTORS			·	
1	$\frac{\text{RESISTORS}}{\text{Comp}, 51 \Omega}$, $\pm 5\%$, $\frac{1}{4}$ W	RC103-051	А-В	CB5105	1
3,9	Comp, 47 K Ω, ±10%, ¼ W	RC104-347	A-B	CB4731	2
4	Comp, 12 KΩ, ±5%, ¼ W	RC103-312	A-B	CB1235	1
5	Comp, 360 Ω , $\pm 5\%$, $\frac{1}{4}$ W	RC103-136	А-В	CB3615	1
6	Comp, 4.7 KΩ, ±5%, ½ W	RC103-247	A-B	CB4725	1
7	Comp, 4.7 K Ω , $\pm 10\%$, $\frac{1}{4}$ W	RC104-247	A-B	CB4721 CB1031	1 2
8,13	Comp, 10 K Ω , ±10%, $\frac{1}{4}$ W	RC104-310 RC104-622	A-B A-B	CB2261	1
10 11	Comp, 22 M Ω , $\pm 10\%$, $\frac{1}{4}$ W Comp, 100 K Ω , $\pm 10\%$, $\frac{1}{4}$ W	RC104-622	A-B	CB1041	1
11 12	Comp, 4.7 M Ω, ±10%, ½ W	RC104-547	A-B	CB4751	1
14	Comp, 220 Ω, ±10%, ¼ W	RC104-122	A-B	CB2211	1
15	Comp, 2.2 K Ω , $\pm 10\%$, $\frac{1}{4}$ W	RC104-222	А-В	CB2221	1
17	Comp, 1 KΩ, ±10%, ¼ W	RC104-210	А-В	CB1021	1
"s "	SWITCH				
ī	Pushbutton SPDT-N.O., momentary	SM000-007	Б-Н	30-1	1

FERENCE	DECODIDEION.	WAVETEK	MAN	UFACTURER	T		
SYMBOL	DESCRIPTION .	PART NO.	CODE	NUMBER	a		
					 		
	CAPACITORS	aniii 200			١,		
	Ceramic Feedthru, .09 µF GMV 100 V	CF111-390		CLD03DA	1 5		
8,9,10,11	Ceramic Feedthru, 500 pF ±20% 250 V	CF104-150	1	EF-4	5 4		
12,13,14,	Ceramic Feedthru, 470 pF ±20% 500 V	CF101-147	A-B	FA5C	4		
15,	Ceramic Disc, .01 µF ±20% 100 V	CD103-310	SPR	TG-S10	2		
3	Electrolytic, 10 μF 20 V	CE120-010	ACI	100DE106M	3		
6,7	Electionytic, to hi 20 v	V	1102	20C2	_		
וו מי	DIODES			,			
<u>R</u> ''	Germanium Point Contact	DG100÷341	ніт	1N34AS	2		
,4 ,3	SIlicon, Junction 100 PIV	DR000-001	DIO	1N4004	2		
, ي	bilicon, bunction 200 111						
•							
:c "	INTEGRATED CIRCUITS	-					
<u>.9</u>	Timer, 8 pin; DIP	IC000-006	MOT	MC1455	1		
-	Operational Amplifier, 8 pin DIP	IC000-002	SIG	N741V	1		
•	3				'		
ζ 11	RELAY						
	ZPDT `	MR000-003	G-E	3SCS5007K1	1		
	•						
•	•	•	·				
. 11	INDUCTORS	•					
$\frac{1}{2}$	10 Turn Toroid	LA006-010	W-I	LA006-010	2		
- 1	•	•		·			
· 		•					
<u>'</u>	TRANSISTORS	01000 5/1		037205/4	ا ا		
,2	NPN, Silicon	QA038-541	i 1	2N3854A	2		
	PNP, Silicon	QB000-009	TOM	MPS3702	1		
	•	•					
, 11	DECTORATE			•			
<u> </u>	RESISTORS Composition, 220 ohm ±10% ½ W	RC104-122	A-B	CB2211	,		
4. 5	Composition, 2.2 Kilohm ±10% ¼ W	RC104-122	A-B	CB2221	$\begin{vmatrix} 1 \end{vmatrix}$		
٠.	Composition, 4.7 Kilohm ±10% ¼ W	RC104-247	A-B	CB4721	ī		
,13	Composition, 10 Kilohm ±10% ¼ W	RC104-310	A-B	CB1031	2		
,13	Composition, 12 Kilohm ±5 % ¼ W	RC103-312	A-B	CB1235	1		
,9	Composition, 47 Kilohm ±10% ¼ W	RC104-347	A-B	CB4731	2		
	Composition, 100 Kilohm ±10% ¼ W	RC104-410	A-B	CB1041	1		
2	Composition, 4.7 Megohm ±10% 1/4 W	RC104-547	A-B	CB4751	1		
0	Composition, 22 Megohm ±10% ¼ W	RC104-622	A⊤B	CB2261	1		
	Composition, 51 ohm ±5% ½ W	RC103-051	A-B	CB5105	1		
	Composition, 4.7 Kilohm ±5% ¼ W	RC103-247	A-B	CB4725	1		
	Composition, 360 ohm ±5% ½ W	RC103-136	A-B	CB3615	1.1		
7	Composition, 1 Kilohm ±10%, ¼ W	RC104-210	А-В	CB1021	1		
			·				
		•					
3	SWITCH	avoco co=		20 1	,		
	Switch Push Button N.O.	SM000-007	G-H	30-1	1		
т п.	COMPRESSION (TAGES)						
<u>'</u>	CONNECTORS (JACKS)	JE 000-0 07	ò-s	OSM211	2		
1,2	SMA Receptacle	3E000-007	U-3		16		

